Issue 3(47), 2017

DOI 10.21440/2307-2091-2017-3-69-75

Additive mathematical model of materials aeration classification in separators [In Russian, in English] pdf

V. Ya. Potapov, V. N. Makarov, N. V. Makarov, E. E. Franyuk

The article is devoted to confirmation of a mechanism of aeration classification in drum-shelf friction separators of materials, the components of which are distinguished by a wide range of “sailage” in order to increase the separators efficiency and the quality of finished products in technology of components separation of ore and non-ore materials. Using aerodynamics of bodies of arbitrary shape in a directed air flow, a mathematical model is obtained of aeration classification of particles of material components, depending on their physical properties, unified by an integral criterion of “sailage”, and controlled airflow parameters with separate accounting of influence of particles velocity and flow. Equations are obtained for calculation of geometric parameters of a unit of aeration classification friction drum – shelf separator depending on integral criterion of “sailage” determined by shape, size, density of initial raw material and air viscosity providing for maximum quality of stratification of the feedstock and, as a result, increasing the production efficiency and the quality of the separated material. The efficiency of aeration classification with the use of a controlled air flow is confirmed, as well as sufficient convergence of experimental and calculated data. The additive mathematical model has confirmed the high efficiency of application of aeration classification in drum-type friction separators to improve the quality of stratification with reference to initial raw materials, components of which differ in a wide range of “sailage”.

Keywords: speed of being in the air; “sailage”; physical characteristics; frictional separator; aerodynamic effect.

 

REFERENCES

1. Belov M. A., Dyabin N. V., Koposov Yu. B., et al. 1975, Praktika obogashcheniya asbestovykh rud [The practice of asbestos ores enriching], ed. by F. P. Sofronov, Moscow, 224 pp.
2. Kelina I. M., Tsypin E. F, Aleksandrova E. P. 1983, O koeffitsiyentakh treniya mineralov pri obogashchenii slyudosoderzhashchikh slantsev na polochnom vozdushnom separatore [About friction coefficients of minerals in enrichment of micaceous shales in shelf air separator]. Izv. vuzov. Gornyy zhurnal [News of the Higher Institutions. Mining Journal], no. 1, pp. 126–129.
3. Lyaptsev S. A., Tsypin E. F., Potapov V. Ya., Ivanov V. V. 1996, Matematicheskoe modelirovanie razdeleniya chastits v barabanno-polochnom friktsionnom separatore [Mathematical modeling of particles separation in a drum-shelf friction separator]. Izv. vuzov. Gornyy zhurnal [News of the Higher Institutions. Mining Journal], no. 7, pp.147–150.
4. Lyaptsev S. A., Potapov V. Ya., Davydov S. Ya., Potapov V. V., Semerikov L. A., Vasil’ev E. A. 2014, Klassifikatsiya materialov pri udare o razdelitel’nuyu poverkhnost’ [Classification of granular materials in impact with separation surface]. Novye ogneupory [Refractories and industrial Ceramics], no. 12, pp. 27–30. (In Russian, in English).
5. Makarov V. N., Davydov S. Ya. 2015, Theoretical basis for efficiency increasing in technological processes. Springer science + business media, no. 2, pp. 59–63.
6. Potapov V. Ya., Timukhin S. Ya., Potapov V. V., et al. 2011, Ispol’zovanie aerodinamicheskogo effekta vo friktsionnykh separatorakh dlya razdeleniya mineral’nykh kompleksov, obladayushchikh parusnost’yu [The use of aerodynamic effect in friction separators for separation of mineral complexes possessing “sailage”]. Izv. UGGU [News of the Ural State Mining University], no. 25–26, pp. 84–89.
7. Shalyugina V. A, Berger G. S. 1972, Issledovanie skorosti vitaniya volokna antofillit-asbesta v vozdushnoy srede [Investigation of suspension velocity of antifillite-asbestos fiber in the air]. Novye dostizheniya v tekhnologii obogashcheniya asbestovykh rud [New achievements in the technology of asbestos ore enrichment], no.13, pp. 122–129.
8. Shchedrinskiy M. B., Volegov A. V., Muller E. K. 1962, Obogashcheniye asbestovykh rud [Enrichment of asbestos ores]. Moscow, 234 p.
9. Kelina I. M., Tsypin E. F., Aleksandrova E. P. 1983, About a coefficient of minerals friction in enrichment of mica-containing shales in a shelf air separator Izv. vuzov. Gornyy zhurnal [News of the Higher Institutions. Mining Journal], no. 4, pp. 126–129.
10. Aleksandrova E. P., Tikhonov O. N. 1986, Analysis of regularities of mineral separation and selection of optimal regimes for shelf air separator. Tsvetnye metally [Non-ferrous metals], no. 6, pp. 12–17.
11. Urban J. 1967, Pnevmaticheskiy transport [Pneumatic transport]. In Russian, translation from Czech. Ed. by L. M. Shvedova. Moscow, 256 p.
12. Malevich I. P., Seryakov V. S., Mishin A. V. 1984, Transportirovka i skladirovanie poroshkoobraznykh stroitel’nykh materialov [Transportation and storage of powdery building materials]. Moscow, 184 p.

Лицензия Creative Commons
All articles posted on the site are available under the Creative Commons Attribution 4.0 Global License.