Editorial Team


B. Boumaza, T. V. Chekushina / News of the Ural State Mining University. 2021. Issue 1(61), pp. 7-16



Research relevance. Phosphate mining activities are one of the main sources of contamination by heavy metals since they harmfully affect the soil and lead to the degradation of the ecosphere.
Research aim. This study aims at characterizing and evaluating the metallic contamination of soils in the vicinity of the Djebel Onk mine in the town of Bir El Ater (Wilaya of Tébessa) in eastern Algeria, and particularly focusing on estimating the spatial variability of this contamination and the extent of the contaminated area.
Methodology. The physicochemical characteristic (pH) was determined by pH-meter, whereas AAS was used for the determination of heavy metals (Pb, Cu, Zn, Cd) in the examined soil
Research results. The results reveal that soils that are close to the mine site studied and even those that are far away are heavily contaminated with heavy metals — lead (Pb), zinc (Zn), copper (Cu) and cadmium (Cd); the results also point out to a high variability of concentrations not only between sampling sites but also within the same mine site. The analysed soil pollution index is generally high even for soils sampled downstream more than 30 km from the mine site, whereas it is extremely high on the surface of the tailings slopes, underlining the fact that tailings are considered perennial sources of heavy metal contamination in their current state.
Conclusion. The unhealthy area affected by metal pollution from mining sites in the Djebel Onk is very large as a result of the dispersion, by wind and water transport, of residual pollutants from the mine wastes abandoned on site. Remediation measures must be put into place to immobilize the pollutants and limit their spread to the environment

Keywords: Soil contamination, Algeria, heavy metals, phosphate mine, pollution index.



1. Adriano D. C. 1986, Trace elements in the terrestrial environment. N. Y.: Springer-Verlag, 533 p.
2. Baize D. 1997, Teneurs totales en éléments traces métalliques dans les sols (France). Références et stratégies d’interprétation. Paris: Inra éditions, 408 p.
3. Jung M. C. 2001, Heavy metal contamination of soil and waters in and around the Imcheon Au–Ag mine, Korea. Applied Geochemistry, vol. 16, issues 11–12, pp. 1369–1375. https://doi.org/10.1016/S0883-2927(01)00040-3
4. Lee C. G., Chon H.-T., Jung M. C. 2001, Heavy metal contamination in the vicinity of the Daduk Au–Ag–Pb–Zn mine in Korea. Applied Geochemistry, vol. 16, issues 11–12, pp. 1377–1386. https://doi.org/10.1016/S0883-2927(01)00038-5
5. Navarro M. C., Pérez-Sirvent C., Martínez-Sánchez M. J., Vidal J., Tovar P. J., Bech J. 2008, Abandoned mine sites as a source of contamination by heavy metals: a case study in a semi-arid zone. Journal of Geochemical exploration, vol. 96, issues 2–3, pp. 183–193. https://doi.org/10.1016/j.gexplo.2007.04.011
6. Dittmar H. 2009, How do “body perfect” ideals in the media have a negative impact on body image and behaviors? Factors and processes related to self and identity. Journal of Social and Clinical Psychology, vol. 28(1), pp. 1–8. https://doi.org/10.1521/jscp.2009.28.1.1
7. Al-Nuzal S. M. D. 2017, Environmental impact of radionuclides and inorganic chemicals from Al-Qaim fertilizers complex, Iraq. Iraqi Bulletin of Geology and Mining, no. 7, pp. 93–111.
8. Williams C. H., David D. J. 1976, The accumulation in soil of cadmium residues from phosphate fertilizers and their effect on the cadmium content of plants. Soil Science, vol. 121, pp. 86–93. https://doi.org/10.1097/00010694-197602000-00004
9. Whitby L. M., Stokes P. M., Hutchinson T. C., Myslik G. 1976, Ecological consequence of acidic and heavy-metal discharges from the Sudbury smelters. Canadian Mineralogist, vol. 14, pp. 47–57.
10. Poelstra P., Frissel M. J., El-Bassam N. 1979, Transport and accumulation of Cd ions in soils and plants. Zeitschrift für Pflanzenernährung und Bodenkunde, vol. 142, issue 6, pp. 848–864. https://doi.org/10.1002/jpln.19791420610
11. Manecki A., Klapyta Z., Schejbal-Chwastek M., Skowronski A., Tarkowski J., Tokarz M. 1981, Effect of industrial pollutants of the atmosphere on the geochemistry of natural environment of the Niepolomice forest. Prace Mineralogiczne, vol. 71, pp. 1–58. (In Polish)
12. Boularbah A., Schwartz C., Bitton G., Morel J. L. 2006, Heavy metal contamination from mining sites in South Morocco: 1. Use of a biotest to assess metal toxicity of tailings and soils. Chemosphere, vol. 63, issue 5, pp. 802–810. https://doi.org/10.1016/j.chemosphere.2005.07.079
13. Lim H. S., Lee J. S., Chon H.-T., Sager M. 2008, Heavy metal contamination and health risk assessment in the vicinity of the abandoned Songcheon Au–Ag mine in Korea. Journal of Geochemical Exploration, vol. 96, issues 2–3, pp. 223–230. https://doi.org/10.1016/j.gexplo.2007.04.008
14. Lee J. S., Chon H.-T. 2003, Exposure assessment of heavy metals on abandoned metal mine areas by ingestion of soil, crop plant and groundwater. Journal Physique IV, France, vol. 107, pp. 757–760. https://doi.org/10.1051/jp4:20030411
15. Gupta G. C., Harrison F. L. 1981, Effect of cations on copper adsorption by kaolin. Water, Air, and Soil Pollution, vol. 15, issue 3, pp. 323–327. https://doi.org/10.1007/BF00285046
16. Jarvis I., Burnett W. C., Nathan Y., Almbaydin F. S. M., Attia A. K. M., Castro L. N., Flicoteaux R., Hilmy M. E., Husain V., Qutawnah A. A., Serjani A., Zanin Y. N. 1994, Phosphorite geochemistry – state-of-the-art and environmental concerns. Eclogae Geologicae Helvetiae (Journal of the Swiss Geological Society), vol. 87, issue 3, pp. 643–700.
17. Rybicka E. H., Jedrzejczyk B. 1995, Preliminary studies on mobilisation of copper and lead from contaminated soils and readsorption on competing sorbents. Applied Clay Science, vol. 10, issue 3, pp. 259–268. https://doi.org/10.1016/0169-1317(95)00006-P
18. Genivar 2001, Etude d’impact sur l’environnement des rejets fins des laveries de phosphate de la compagnie des phosphates de Gafsa. Internal Report. Gafsa Phosphate Company, 181 p.
19. Hakkou R., Wahbi M., Bachnou A., Elamari K., Hanich L., Hibti M. 2001, Impact de la décharge publique de Marrakech (Maroc) sur les ressources en eau. Bulletin of Engineering Geology and the Environment, vol. 60, issue 4, pp. 325–336. https://doi.org/10.1007/s100640100117
20. Al-Hwaiti M., Matheis G., Saffarini G. 2005, Mobilization, redistribution and bioavailability of potentially toxic elements in Shidiya phosphorites, Southeast Jordan. Environmental Geology, vol. 47, issue 3, pp. 431–444. https://doi.org/10.1007/s00254-004-1173-2
21. Sabiha-Javied, Mehmood T., Chaudhry M. M., Tufail M., Irfan N., 2009, Heavy metal pollution from phosphate rock used for the production of fertilizer in Pakistan. Microchemical Journal, vol. 91, issue 1, pp. 94–99. https://doi.org/10.1016/j.microc.2008.08.009
22. Da Silva E. F., Mlayah A., Gomes C., Noronha F., Charef A., Sequeira C., Esteves V., Marques A. R. F. 2010, Heavy elements in the phosphorite from Kalaat Khasba mine (North-Western Tunisia): Potential implications on the environment and human health. Journal of hazardous materials, vol. 182, issues 1–3, pp. 232–245. https://doi.org/10.1016/j.jhazmat.2010.06.020
23. Akujobi C. O., Odu N. N., Okorondu S. I. 2012, Bioaccumulation of lead by Bacillus species isolated from pig waste. Journal of Research in Biology, vol. 2, pp. 83–89.
24. Hakkou R., Benzaazoua M., Bussière B. 2016, Valorization of phosphate waste rocks and sludge from the Moroccan phosphate mines: challenges and perspectives. Procedia Engineering, vol. 138, pp. 110–118. https://doi.org/10.1016/j.proeng.2016.02.068
25. Ettoumi M., Jouini M., Neculita C. M., Bouhlel S., Coudert L., Haouech I., Benzaazoua M. 2020, Characterization of Kef Shfeir phosphate sludge (Gafsa, Tunisia) and optimization of its dewatering. Journal of environmental management, vol. 254, 109801. https://doi.org/10.1016/j.jenvman.2019.109801
26. Khorasanipour M., Rashidi S. 2020, Geochemical fractionation pattern and environmental behaviour of rare earth elements (REEs) in mine wastes and mining contaminated sediments; Sarcheshmeh mine, SE of Iran. Journal of Geochemical Exploration, vol. 210, 106450. https://doi.org/10.1016/j.gexplo.2019.106450
27. Bell F. G., Bullock S. E. T., Hälbich T. F. J., Lindsay P. 2001, Environmental impacts associated with an abandoned mine in the Witbank Coalfield, South Africa. International journal of coal geology, vol. 45, issues 2–3, pp. 195–216. https://doi.org/10.1016/S0166-5162(00)00033-1
28. Schwartz C., Gérard E., Perronnet K., Morel J. L. 2001, Measurement of in situ phytoextraction of zinc by spontaneous metallophytes growing on a former smelter site. Science of the total environment, vol. 279, issues 1–3, pp. 215–221. https://doi.org/10.1016/S0048-9697(01)00784-7
29. Passariello B., Giuliano V., Quaresima S., Barbaro M., Caroli S., Forte G., Carelli G., Iavicoli I. 2002, Evaluation of the environmental contamination at an abandoned mining site. Microchemical Journal, vol. 73, issues 1–2, pp. 245–250. https://doi.org/10.1016/S0026-265X(02)00069-3
30. Bezzi N., Merabet D., Pivan J. Y., Benabdeslam N., Arkoub H. 2005, Valorisation et enrichissement par flottation du minerai de phosphate du gisement de Bled El Hadba (Algérie). Annales de Chimie Science des Matériaux, vol. 30, no. 2, pp. 171–186.
31. Bezzi N., Aïfa T., Merabet D., Pivan J. Y. 2008, Magnetic properties of the Bled El Hadba phosphate-bearing formation (Djebel Onk, Algeria): Consequences of the enrichment of the phosphate ore deposit. Journal of African Earth Sciences, vol. 50, issues 2–4, pp. 255–267. https://doi.org/10.1016/j.jafrearsci.2007.09.019
32. Bezzi N., Aïfa T., Hamoudi S., Merabet D. 2012, Trace elements of Kef Es sennoun natural phosphate (Djebel Onk, Algeria) and how they affect the various Mineralurgic modes of treatment. Procedia Engineering, vol. 42, pp. 1915–1927. https://doi.org/10.1016/j.proeng.2012.07.588
33. Kechiched R., Laouar R., Bruguier O., Salmi-Laouar S., Kocsis L., Bosch D., Foufou A., Ameur-Zaimeche O., Larit H. 2018, Glauconitebearing sedimentary phosphorites from the Tébessa region (eastern Algeria): Evidence of REE enrichment and geochemical constraints on their origin. Journal of African Earth Sciences, vol. 145, pp. 190–200. https://doi.org/10.1016/j.jafrearsci.2018.05.018
34. Kechiched R., Laouar R., Bruguier O., Kocsis L., Salmi-Laouar S., Bosch D., Ameur-Zaimeche O., Foufou A., Larit H. 2020, Comprehensive REE + Y and sensitive redox trace elements of Algerian phosphorites (Tébessa, eastern Algeria): A geochemical study and depositional environments tracking. Journal of Geochemical Exploration, vol. 208, 106396. https://doi.org/10.1016/j.gexplo.2019.106396
35. Thomas Ph. 1888, Sur les gisements de phosphates de chaux d’Algérie. C. R. acad. Sci. Paris, vol. 106, pp. 379–382.
36. Chabou-Mostefai S. 1987, Étude de la série phosphatée tertiaire du Djebel Onk, Algérie, Stratigraphie, Pétrographie, Minéralogie et Analyse Statistique, Thèse Doctorat, Université de Droit, d’Économie et des Sciences d’Aix-Marseille, France, p. 376.
37. Larouci M. 1988, Study of the characterization and the valorization of phosphate ore of Djebel Onk, Algeria, Ph.D. Thesis, University of Orleans, France.
38. Mezghache H. 1991, Détermination, localisation et estimation globales des différents types de minerais de phosphate dans le gisement de Kef Es-Snnoun, Djebel Onk, Algérie. Rapport E.N.FERPHOS, 42 p.
39. Bezzi N., Merabet D., Benabdeslem N., Arkoub H. 2001, Caracterisation physico-chimique du minerai de phosphate de Bled El HadbaTebessa. Annales de Chimie Science des Matériaux, vol. 26, issue 6, pp. 5–23.
40. Kassatkine Y., Yahyaoui A., Chatilov S. 1980, The works of prospecting and assessment on phosphate executed in 1976–1978 in the mining district of Djebel Onk. SONAREM (Société Nationale de Recherche et d’Exploration Minière) Internal Report, vol. 2, p. 140.
41. Chiffoleau J. F., Truquet I. 1994, Nouvelle méthode de dosage de quelques métaux – traces dans les sédiments et les matières en suspension. Nantes: Ifremer. http://archimer.ifremer.fr/doc/00140/25119/23228.pdf
42. Bowen H. J. M. 1979, Environmental chemistry of the elements. N. Y.: Academic Press, 333 p.
43. MATF (ministère de l’Aménagement du Territoire français). 1998, Teneurs limites de concentration en ETM dans le sol. Arrêté du 8 janvier 1998. Journal Officiel de la République Française du 31 janvier 1998.
44. Pichtel J., Kuroiwa K., Sawyerr H. T. 2000, Distribution of Pb, Cd and Ba in soils and plants of two contaminated sites. Environmental pollution, vol. 110, issue 1, pp. 171–178. https://doi.org/10.1016/S0269-7491(99)00272-9
45. Saidi N. 2004, Le bassin versant de la Moulouya: pollution par les métaux lourds et essais de phytoremédiation. Doctorats Es Sciences, Faculté des Sciences, Université Mohammed V, Rabat, Maroc, 161 p.
46. Kabata-Pendias A., Pendias H. 1992, Trace elements in soils and plants. 2nd edition. Boca Raton (Florida): CRC Press, 365 p.
47. Basta N. T., Pantone D. J., Tabatabai M. A. 1993, Path analysis of heavy metal adsorption by soil. Agronomy Journal, vol. 85, issue 5, pp. 1054-1057. https://doi.org/10.2134/agronj1993.00021962008500050018x
48. Jung M. C., Thornton I. 1996, Heavy metal contamination of soils and plants in the vicinity of a lead-zinc mine, Korea. Applied Geochemistry, vol. 11, issues 1–2, pp. 53–59. https://doi.org/10.1016/0883-2927(95)00075-5
49. Chon H.-T., Ahn J.-S., Jung M. C. 1998, Seasonal variations and chemical forms of heavy metals in soils and dusts from the satellite cities of Seoul, Korea. Environmental Geochemistry and Health, vol. 20, issue 2, pp. 77–86. https://doi.org/10.1023/A:1006593708464
50. Borůvka, L. Drábek O. 2004, Heavy Metal Distribution between Fractions of Humic Substances in Heavily Polluted Soils. Plant Soil & Environment, vol. 50, issue 8, pp. 339–345.
51. Plant J. A., Raiswell R. 1983, Principles of environmental geochemistry. In: I. Thornton (éd). Applied Environmental Geochemistry. N. Y.: Academic Press, pp. 1–39.
52. Essington M. E., Foss J. E., Roh Y. 2004, The soil mineralogy of lead at Horace’s Villa. Soil Science Society of America Journal, vol. 6, issue 3, pp. 979–993. https://doi.org/10.2136/sssaj2004.9790
53. Ernst W. H. O., Nelissen H. J. M. 2000, Life-cycle phases of a zinc-and cadmium-resistant ecotype of Silene vulgaris in risk assessment of polymetallic mine soils. Environmental Pollution, vol. 107, issue 3, pp. 329–338. https://doi.org/10.1016/S0269-7491(99)00174-8
54. Walker D. J., Bernal M. P. 2004, The effects of copper and lead on growth and zinc accumulation of Thlaspi caerulescens J. and C. Presl: implications for phytoremediation of contaminated soils. Water, Air, and Soil Pollution, vol. 151, issues 1–4, pp. 361–372. https://doi.org/10.1023/B:WATE.0000009901.89000.40
55. Morton-Bermea O., Hernández-Álvarez E., González-Hernández G., Romero F., Lozano R., Beramendi-Orosco L. E. 2009, Assessment of heavy metal pollution in urban topsoils from the metropolitan area of Mexico City. Journal of Geochemical Exploration, vol. 101, Issue 3, pp. 218–224. https://doi.org/10.1016/j.gexplo.2008.07.002
56. Faiz Y., Tufail M., Javed M. T., Chaudhry M. M., Naila-Siddique. 2009, Road dust pollution of Cd, Cu, Ni, Pb and Zn along Islamabad expressway, Pakistan. Microchemical Journal, vol. 92, issue 2, pp. 186–192. https://doi.org/10.1016/j.microc.2009.03.009
57. Brady J. P., Ayoko G. A., Martens W. N., Goonetilleke A. 2015, Development of a hybrid pollution index for heavy metals in marine and estuarine sediments. Environmental Monitoring and Assessment, vol. 187, issue 5, article number 306. https://doi.org/10.1007/s10661-015-4563-x
58. Kloke A. 1979, Content of Arsenic, Cadmium, Chromium, Fluorine, Lead, Mercury, and Nickel in Plants Grown on Contaminated Soils. United Nations-ECE Symposium, Geneva, pp. 51–53.


A. Lamamra et al / News of the Ural State Mining University. 2021. Issue 1(61), pp. 17-24



Reserch relaevance. Most ground movements are generally due to rock instability, this natural phenomenon poses a risk to humanity. The properties of the rock mass directly influence the type of movement especially in underground structures.
Research aim. Our goal is to characterize and classify the rock mass of diatomite from the sig mine using geomechanical classification systems such as the RQD and RMR in order to determine the quality of the rocks in the sig mine Western Algeria from the determination of the physical and mechanical properties.
Methodology. In this article, the characterization analysis of the diatomite rock mass of the sig mine was carried out. First, determinations of the physical properties and carried out the triaxial test to determine the mechanical properties (young’s modulus, the friction angle, the dilatancy angle, the cohesion, the poisson’s ratio). Secondly to classify the deposit and give a recommendation to avoid stability problems.
Research results. The results from physical and mechanical analyzes, it can be said that the nature of the rock present in the diatomite (underground mine) does not have enough resistance.
Conclusion. Our study definitively proves that the rock mass of sig diatomite is of very low quality and it will be very dangerous for the underground mining work of the mine especially in places where the mineralized layer is very deep. And we suggest to replace the mining technique room and pillar currently used in the diatomite mine and put another mining method which includes roof support system to ensure the safety both of the miners and the equipment.

Keywords: Diatomite, RQD, RMR, triaxial test, physical and mechanical analysis.



1. Kawamoto M., Murakami T., Hanao M., Kikuchi H., Watanabe T. 2002, Mould powder consumption of continuous casting operations. Ironmaking
and Steelmaking, vol. 29, no. 3, pp. 199–202. https://doi.org/10.1179/030192302225004151
2. Sprynskyy M., Kovalchuk I., Buszewski B. 2010, The separation of uranium ions by natural and modified diatomite from aqueous solution.
Journal of Hazardous Materials, vol. 181, issues 1–3, pp. 700–707. https://doi.org/10.1016/j.jhazmat.2010.05.069
3. Lamamra A., Neguritsa D. L., Eremenko V. A. 2020, Justification of Longwall Mining Technology for the Development of Kieselguhr Deposit
in Sig Mine, Algeria. IOP Conf. Series: Earth and Environmental Science, vol. 609. Article number 012002. https://doi.org/10.1088/1755-1315/609/1/012002
4. Lamamra A., Neguritsa D. L. 2019, Osnovnyye napravleniya razvitiya geotekhnologii na Kizel’gurskom mestorozhdenii (Alzhir) [The main
directions of development of geotechnology at the Kizelgur deposit (Algeria)]. Issues of subsoil development in the XXI century through the eyes
of the young scientists: materials of 14 International scientific school of young scientists and specialists. Moscow, pp. 202–205URL: www.spsl.
5. Elden H., Morsy G., Bakr M. 2010, Diatomite: Its Characterization, Modification and Applications. Asian Journal of Materials Science, vol. 2 (3),
pp. 121–136. https://doi.org/10.3923/ajmskr.2010.121.136
6. Gómez J., Gil M. L. A., de la Rosa-Fox N., Alguacil M. 2015, Formation of siliceous sediments in brandy after diatomite filtration. Food
Chemistry. vol. 170. pp. 84–89. http://dx.doi.org/10.1016/j.foodchem.2014.08.028
7. Nakkad R., Ezbakhe H., Benmoussa A., Ajzoul T., El Bakkouri A. Contribution à l’étude morphologique et thermique des diatomites utilisées
dans l’isolation. 12émes journées internationales de thermique, 15–17 nov. 2005. Tanger, Maroc. (In French)
8. Zhao Y.-H., Geng J.-T., Cai J.-Ch., Cai Yu-F., Cao Ch.-Y. 2020, Adsorption performance of basic fuchsin on alkali-activated diatomite. Adsorption
Science and Technology, May, pp. 1–17. https://doi.org/10.1177/0263617420922084
9. Reka A. A., Pavlovski B., Ademi E., Jashari A., Boev B., Boev I., Makreski P. 2019, Effect of Thermal Treatment of Trepel At Temperature Range
800–1200 ºC. Open Chemistry, vol. 17, issue 1, pp. 1235–1243. https://doi.org/10.1515/chem-2019-0132
10. Reka A. A., Pavlovski B., Makreski P. 2017, New optimized method for low-temperature hydrothermal production of porous ceramics using
diatomaceous earth. Ceramics international, vol. 43, issue 15, pp. 12572–12578. http://dx.doi.org/10.1016/j.ceramint.2017.06.132
11. Reka A. A., Anovski T., Bogoevski S., Pavlovski B., Boškovski B. 2014, Physical-chemical and mineralogical-petrographic examinations of
diatomite from deposit near village of Rožden, Republic of Macedonia. Geologica Macedonica, vol. 28, issue 2, pp. 121–126.
12. Cekova B., Pavlovski B., Spasev D., Reka A. 2013, Structural examinations of natural raw materials pumice and trepel from Republic of
Macedonia. Proceedings of the XV Balkan Mineral Processing Congress. Sozopol, pp. 73–75.
13. Lamamra A., Neguritsa D. L. 2020, Elimination of diatomite dust in the longwall extraction section of the Sig mine in Western Algeria. Izvestiya
vysshikh uchebnykh zavedenii. Gornyi zhurnal, no. 5, pp. 5–12. https://doi.org/10.21440/0536-1028-2020-5-5-12
14. ENOF Internal document of National Company of Non-Ferrous Mining Products, Report about Sig Mine, Algeria, 2004.
15. Lamamra A., Neguritsa D., Mazari M. 2019, Geostatistical Modeling by the Ordinary Kriging in the Estimation of Mineral Resources on the
Kieselguhr Mine, Algeria. IOP Conf. Series: Earth and Environmental Science, vol. 362. Article number 012051. https://doi.org/10.1088/1755-1315/362/1/012051
16. Lamamra A., Eremenko V. A., Neguritsa D. L. 2020, Improvement of the mining technology in the diatomite mine, Algeria. News of the Ural
State Mining University, issue 2(58), pp. 117–122. https://doi.org/10.21440/2307-2091-2020-2-117-122
17. Bieniawski Z. T. 1973, Engineering Classification of Jointed Rock Masses. Transaction of the South African Institution of Civil Engineers, vol.
15, issue 12, pp. 335–344.
18. Zhang L. 2016. Determination and applications of rock quality designation (RQD). Journal of Rock Mechanics and Geotechnical Engineering,
vol. 8, issue 3, pp. 389–397. https://doi.org/10.1016/j.jrmge.2015.11.008
19. Séguret S. A., Guajardo C. M. Geostatistical Evaluation of Rock-Quality Designation and its link with Linear Fracture Frequency. IAMG 2015,
Freiberg, Germany.
20. Al-Jbori A’ssim, Zhang Yong Xing. 2010, Most Used Rock Mass Classifications for Underground Opening. American J. of Engineering and
Applied Sciences, vol. 3 (2), pp. 403–411.
21. Priest S. D., Hudson J. A. 1976, Discontinuity spacing in rock. International Journal of Rock Mechanics and Mining Sciences & Geomechanics
Abstracts, vol. 13, issue 5, pp. 135–148.
22. McQueen L. B., Purwodihardjo A., Barrett S. V. L. 2019, Rock mechanics for design of Brisbane tunnels and implications of recent thinking in
relation to rock mass strength. Journal of Rock Mechanics and Geotechnical Engineering, vol. 11, issue 3, pp. 676–683. https://doi.org/10.1016/j.jrmge.2019.02.001
23. Basahel H., Mitri H. 2017, Application of rock mass classification systems to rock slope stability assessment: A case study. Journal of Rock
Mechanics and Geotechnical Engineering, vol. 9, issue 6, pp. 993–1009. https://doi.org/10.1016/j.jrmge.2017.07.007
24. Mohammadi M., Hossaini M. F. 2017, Modification of rock mass rating system: Interbedding of strong and weak rock layers. Journal of Rock
Mechanics and Geotechnical Engineering, vol. 9, issue 6, pp. 1165–1170. https://doi.org/10.1016/j.jrmge.2017.06.002
25. Celada B., Tardáguila I., Varona P., Rodríguez A., Bieniawski Z. T. Innovating Tunnel Design by an Improved Experience-Based RMR System.
Tunnels for a better Life. In Proceedings of the World Tunnel Congress, Foz do Iguaçu, Brazil, 9–15 May 2014, pp. 1–9.


A. J. Rodriguez Linares, E. V. Karelina/ News of the Ural State Mining University. 2021. Issue 1(61), pp. 33-38



Relevance of the work. Quantifying these oil reserves allows Venezuela to lead the ranking as the country with the
largest oil reserves worldwide
Purpose of the work. Is related to the need of quantification in the recoverable oil reserves in the field of Husepin
(Monagas state, Venezuela) for the oil industry.
The methodology of the research. The La Pica 01 Field is made up of 509 wells, of which 49 wells were used to elaborate
the correlations, since they have spontaneous potential and resistivity curves. For each well, the tops and bases of the
units were determined by analyzing the behavior of the electrical responses of each of the sands, applying the basic
concepts of stratigraphy, as well as a detailed compilation of all the information that corresponds to the wells that form
part of the study to obtain a standard record that contains all the favorable data and be able to carry out the correlations.
Research results. In the S6 sand, 4 oil deposits were found and an Original Oil In Place of 15,875.32 thousands of
normal barrels and recoverable reserves of 2,857. 5576 thousands of normal barrels were estimated. For S8 sand, 5 oil
fields were defined and an Original Oil In Place of 25,940.86 thousands of normal barrels and recoverable reserves of
4,669. 3548 thousands of normal barrels were estimated. Original Oil In Place was not calculated in the S7 sand because
it has no deposits.
Recommendations. Review the production history and verify which wells can be re-incorporated into an oil extraction
plan and Submit the reserves of the study fields to the Ministry of Popular Power for Energy and Petroleum (MENPET)
taking into account the results obtained in this investigation.
Conclusions. 4 oil deposits were found in the S6 sand and 5 oil deposits were found in the S8 sand and each of them were
with stratigraphic limits, structural limits and fluid contact. No oil deposits were found in the S7 sand, although records
have been taken in the northwest of the field show thicknesses of ANP at this stratigraphic level.
Keywords: oil reserves, Orinoco basin, Sigmoilina zone, well, deposit.



1. Instituto geográfico de Venezuela Simón Bolívar (IGVSB). Mapas de vias de acceso y pueblos de Jusepìn – Estado Monagas. 2003. http://
2. Ministerio de Energía y Petróleo. Mapa del estado Monagas. 27 de julio de 2008. http://www.gobiernoenlinea.com.ve
3. Spalletti L. Clasificaciòn de cuencas sedimentarias. 2006. Maraven S. A. 55 p.
4. Díaz A, Reinterpretación geológica de las arenas M4L yacimiento IM4 y P2 yacimiento IM 515, campo caracoles, área de convenio caracoles,
Estado Anzoategui, 2006. 362 p.
5. Mendoza V. Geología de Venezuela y sus cuencas petrolíferas. 2005. 418 p.
6. VI Congreso Geológico Venezolano, 1985. 34 p.
7. LAGOVEN. Recursos y territorios en la Venezuela posible. 1985. 112 p.
8. González de Juana C., Iturralde de Arozena J. M., Picard C. X. Geológia de Venezuela y de sus cuencas petrolíferas. Caracas: Ediciones
Foninves, 1980. 1031 p.
9. Hunt E. Interpretación de perfiles de pozos (avanzado). Centro Internacional de Educación y Desarrollo (CIED), Filial de Petróleos de
Venezuela, S. A.,Capítulos I, II y III. 1998. 266 p.
10. PDVSA-CIED. Caracterización geológica de yacimientos. Segunda edición. 1997. 126 p.
11. Informe interno de PDVSA. Estudios integrados. Maturín – estado Monagas. 2003. 182 p.
12. PDVSA-Intevep. Código estratigráfico de Venezuela (cev). 1997. 43 p. http://www.pdv.com/lexico
13. SIGEMAP (Windows, versión 8). Sistema de generacion de mapas. Programa PDVSA. Caracas, Venezuela.
14. Schlumberger (oilfield services company), Ambiente integrado Web channels. 2008. 358 p. http://pdm_geoquest.pdvsa.com.
15. CVP. Estudio tecnico-operacional de los campos Jusepin, Mulata, Orocual y Manresa. 1974. 671 p.
16. Total oil and gas Venezuela. Caracterizacion estructural del campo Jusepin. Caracas, Venezuela, Marzo 2005. 231 p.
17. Rojas R. Determinacion del area y volumen de la formacion La Pica en toda La Cuenca Oriental de Venezuela. Ciudad Bolívar: Universidad
de Oriente, Núcleo Bolívar. 2008. 180 p.


P. S. Kozlov / News of the Ural State Mining University. 2021. Issue 1(61), pp. 25-32


Relevance. When mapping the vast areas of the Precambrian polymetamorphic complexes in the North Yenisei Ridge,
there is a problem of metamorphism interpretation and phasing of geological development of a particular area along
with thrust tectonics. The solution of these issues is also of great importance for the purposes of areas delineation of
metamorphic rocks that are favorable for the detection of high-alumina (andalusite, kyanite, sillimanite) schists.
Purpose of the work: to substantiate and itemize some geological prospecting, mineralogical and petrological indicator
criteria for the development of high-alumina garnet-kyanite-staurolite blastomylonites of dislocation metamorphism
formed by andalusite-bearing rocks of regional metamorphism.
Research methodology: detailed mapping of structural-metamorphic zoning of dislocation (collisional) metamorphism
in the Mayakon key area with sampling of polymetamorphic rocks for petrographic studies of mineral parageneses.
Investigation of polished thin sections of polymetamorphic rocks by microprobe analysis with elucidation of minerals
zoning, their chemical composition, calculation of the Р–Т paths of metamorphism and determination of the absolute
age of blastomylonite formation based on the 40Ar/39Ar dating of biotite. Analysis and generalization of the results
obtained for the Mayakon area and their comparison with other key areas of the North Yenisei Ridge.
Results. At the Mayakon potential area, a progressive metamorphic zoning of kyanite-bearing blastomylonites
has been identified, and the transitional I, outer II, middle III, and inner zones are determined as the dislocation
metamorphism intensifies towards the Panimba thrust fault. Based on the compositions of garnets, biotite, and
plagioclase, the P–T paths of the early regional metamorphism of andalusite-sillimanite type and late local kyanitesillimanite
type were calculated. A list of geological prospecting, petrological and isotope-geochronological criteria
for recognizing blastomylonites among rocks of regional metamorphism in thrust zones has been substantiated and
Conclusions. Method of polymetamorphism reconstruction in the North Yenisei Ridge shows that tectonic inversion
conditions took place in the Neoproterozoic, in the late Tonian era (~850 Ma ago In terms of occurrences, they are
related to the final stage of the Grenville orogeny (1.1–0.85 Ga). The formation of blastomylonites of dislocation
(collisional) metamorphism by metapelites of regional metamorphism in thrust zones is accompanied by an increase
in the number of mineral phases and leads to a reduction in usable space of high-alumina andalusite schists.

: polymetamorphic complexes, Al2SiO5 polymorphs, blastomylonites, dislocation metamorphism, Mayakon,
North Yenisei Ridge.



1. Kozlov P. S., Lepezin G. G. 1995, Petrology, petrochemistry and metamorphism of the Transangarian rocks of the Yenisei Ridge. Geologiya i
geofizika [Geology and Geophysics], vol. 36, no. 5, pp. 3–22. (In Russ.)
2. Likhanov I. I., Polyansky O. P., Kozlov P. S., Reverdatto V. V., Vershinin A. E., Krebs M., Memmi I. 2000, Replacement of andalusite by kyanite
with increasing pressure and low geothermal gradient in metapelites of the Yenisei Ridge. Doklady AN [Doklady Earth Sciences], vol. 375, no. 4,
pp. 509–513. (In Russ.)
3. Kerrick D. M. 1990, The Al2SiO5 polymorphs. Mineralogical Society of America. Reviews in Mineralogy, vol. 22, 406 p.
4. Likhanov I. I., Reverdatto V. V., 2014, Р–Т–t evolution of metamorphism in the Transangarian Yenisei ridge: petrological and geodynamic
consequences moderate pressures. Geologiya i geofizika [Geology and Geophysics], vol. 55, no. 3, pp. 85–16. (In Russ.)
5. Likhanov I. I., Polyansky O. P., Reverdatto V. V., Kozlov P. S., Vershinin A. E., Krebs M., Memmi I. 2001, Metamorphic evolution of high-alumina
metapelites near the Panimba overthrust (Yenisei ridge): mineral associations, РТ-conditions and tectonic model. Geologiya i geofizika [Geology
and Geophysics], vol. 42, no. 8, pp. 1205–1220. (In Russ.)
6. Whitney D. L., Evans B. W. 2010, Abbreviations for names of rocks-forming minerals. American Mineralogist, vol. 95, no. 1, pp. 185–187.
7. Bel’kov I. V. 1963, Kianitovyye slantsy svity Keyv (geologicheskoye stroyeniye, kristallicheskiye slantsy i kianitovyye rudy) [Kyanite shales of
the Keiv Formation (geological structure, crystalline shales and kyanite ores)]. Moscow, 136 p.
8. Likhanov I. I., Kozlov P. S., Polyansky O. P., Popov N. V., Reverdatto V. V., Travin A. V., Vershinin A. E. 2007, Neoproterozoic age of collisional
metamorphism in the Transangara region of the Yenisei Ridge (based on 40Ar/39Ar data). Doklady AN [Doklady Earth Sciences], vol. 413, no. 6,
pp. 234–237. (In Russ.) https://doi.org/10.1134/S1028334X07020225
9. Likhanov I. I., 2020, Metamorphic indicators of geodynamic settings of collision, extension and shear zones of the Earth’s crust. Petrologiya
[Petrology], vol. 28, no. 1, pp. 4–22. (In Russ.) https://doi.org/10.31857/S0869590320010045
10. Nozhkin A. D., Turkina O. M., Bobrov V. A. 2003, Radioactive and rare earth elements in metapelites as indicators of the composition and
evolution of the Precambrian-continental crust of the Southwestern margin of the Siberian Craton. Doklady AN [Doklady Earth Sciences], vol. 390,
no. 6, pp. 813–817. (In Russ.)
11. Reverdatto V. V., Likhanov I. I., Polyanskiy O. P. 2017, Priroda i modeli metamorfizma [Nature and models of metamorphism], 331 p.
12. Likhanov I. I., Reverdatto V. V., Kozlov P. S., Popov N. V. 2006, Collisional metamorphism of Precambrian complexes in the Transangara
Yenisei Ridge. Petrologiya [Petrology], vol. 16, no. 2, pp. 148–173. (In Russ.)
13. Likhanov I. I., Reverdatto V. V., Kozlov P. S., Vershinin A. E. 2011, The Teysky polymetamorphic complex in the Transangarian Yenisei Ridge
is an example of combined zoning of facies series of low and moderate pressures. Doklady AN [Doklady Earth Sciences], vol. 436, no. 4, pp.
509–514. (In Russ.)
14. Likhanov I. I., Reverdatto V. V., Kozlov P. S., 2011, Collisional metamorphic complexes of the Yenisei Ridge: evolutionary features, age Ridges,
and exhumation rate. Geologiya i geofizika [Geology and Geophysics], vol. 52, no. 10, pp. 1593–1611. (In Russ.)
15. Likhanov I. I., Nozhkin A. D., Reverdatto V. V., Kozlov P. S., Popov N. V. 2014, Grenville-age tectonic events and evolution of the Yenisei Ridge,
western margin of the Siberian craton. Geotektonika [Geotectonics], no. 5, p. 32–53. (In Russ.)
16. Sobolev V. S. 1972, Fatsii regional’nogo metamorfizma umerennykh davleniy [Facies of regional metamorphism of moderate pressures],
Moscow, 288 p.
17. Sobolev V. S. 1974, Fatsii regional’nogo metamorfizma vysokikh davleniy [Facies of regional high-pressure metamorphism], Moscow, 328 p.


M. G. kyzy Alieva, N. G. ogly Valiev / News of the Ural State Mining University. 2021. Issue 1(61), pp. 39-45



Relevance. Three stationary hydrodynamic theoretical problems are solved, in which filtrations obey only the General nonlinear law. Simple flows occur in tasks: plane-parallel, plane-radial, and hemispherical-radial. All derived formulas – oil flow rate, filtration rate, pressure gradient, etc. – should be used to solve various practical problems of the development of these deposits and even when drawing up a project for the development of such deposits.
The methodology of the research. It should be noted that a plane-parallel simple filtration flow of oil originates from a strip-like reservoir to a straight gallery. In addition, such a simple filtration fluid flow also occurs when the oil field under development has several parallel rectilinear rows of production production wells and, in some cases, there may be rows of injection water wells in the reservoir.
Research results. In oil-bearing areas between parallel adjacent rows, oil filtration is also plane-parallel. Hence, the practical significance of solving the first problem of a plane-parallel oil flow in this scientific article becomes clear. Planar-radial simple filtration flow of oil originates from a circular horizontal formation to a central production well. In addition, such a simple filtration fluid flow also occurs when a strip-like oil field being developed has several (usually three or four) parallel straight rows of production production wells. In the drainage zones of these wells, a simple flat-radial filtration flow also occurs.
Conclusions. From the foregoing, the practical significance of a radial plane oil flow becomes clear. Hemispherical – a radial simple filtration flow of oil originates from a hemispherical reservoir to a central well, barely penetrated by the reservoir by its hemispherical concave bottom. By analyzing these calculation formulas, you can identify the specific features of the development of deposits, develop and implement measures to eliminate undesirable phenomena.

: filtration flows, non-newtonian oil, nonlinear law, incompressible oil, homogeneous reservoir, flow rate,
filtration rate, duration of advance, differential equation.



1. Novruzova S. H., Mustafayev S. D. 2019, Sıxılmayan qeyri-nyuton neftin bircins məsaməli mühitdə düzxətli kəhrizə yastı-paralel sadə süzülmə
axını, no. 2, səh. 36–38.
2. Mustafayev S. D., İsmayılov Q. S., Sadıqova N. S. 2012, Qeyri-bircins məsaməli mühitdə qeyri-nyuton mayenin yastı-radial stasionar süzülmə
axını. Azərbaycan Elmi Beynəlxalq nəzəri jurnal, no. 8-9, səh. 91–96.
3. Mustafayev S. D., Asadov A. Sh., Mustafaev N. S., Sadigova N. S. 2010, Nesmeshivayushcheyesya vytesneniye odnoy neszhimayemoy
nen’yutonovskoy zhidkosti drugoy v odnorodnoy poristoy srede [Immiscible displacement of one incompressible non-Newtonian fluid by another
in a homogeneous porous medium]. Azərbaycan Elmi Beynəlxalq nəzəri jurnal, no. 7-8, səh. 42–45.
4. Mustafayev S. D., Şıxıyev M. N., Kazımov F. K., Hüseynova R. K., Mustafayev N. S. 2009, Sıxılmayan qeyri-nyuton mayelərin bircins məsaməli
mühitdə yastı-radial süzülmə axınlar. ANT, no. 11, səh. 35–37.
5. Pirverdyan A. M. 1956, Neftyanaya podzemnaya gidravlika [Oil underground hydraulics]. Baku, 332 p.
6. Kristea N. 1961, Podzemnaya gidravlika [Underground hydraulics]. Мoscow, vol. I, 343 p.
7. Mustafayev S. D., Kyazimov F.K., Guseinova R.K. 2020, Hemispherical stationary movements of incompressible oils in a homogeneous reservoir
according to various filtration laws. Vektor GeoNauk [Vector of GeoSciences], vol. 3, no. 2, pp. 24–29. (In Russ.) https://doi.org/10.24411/2619-
8. Mustafayev S. D., Gasymova S.A. 2018, Plane-parallel stationary filtration of incompressible viscous-plastic oil with the manifestation of a
parallel pressure gradient. Tekhnologii nefti i gaza [Oil and gas technologies], no. 2, pp. 24–27. (In Russ.)
9. Gadzhieva L. S. 2019, Sfericheski-radial’noye dvizheniye vyazko-plastichnoy neszhimayemoy nefti v odnorodnom plaste po li-neynomu zakonu
fil’tratsii v vodonapornom rezhime [Spherical-radial motion of viscous-plastic incompressible oil in a homogeneous reservoir according to the
linear law of filtration in a water-driven regime], no. 3, pp. 77–81.
10. Mustafayev S. D., Kazımov F. K., Xankişiyeva T. İ. 2018, Bircins zolaqvari yataqda sıxılmayan özlü-plastik neftin düzxətli kəhrizə su ilə
sıxışdırılması. Vektor GeoNauk [Vector of GeoSciences], vol. 1, no. 4, pp. 28–31.
11. Mustafayev S. D., Bayramov F. G. 2019, Fil’tratsiya neszhimayemoy vyazko-plastichnoy nefti so svobodnoy poverkhnost’yu v odnorodnom
plaste k pryamolineynoy galereye [Filtration of incompressible viscous-plastic oil with a free surface in a homogeneous reservoir to a straight line
mine gallery], no. 1, pp. 60–63.
12. Mustafayev S. D., Safarov E. G., Aslanov D. N. 2017, Method of reducing of surface phenomena negative influence of oil recoverу coefficient
at expansion stage of layers. Engineering Computations, vol. 31, no. 8(3), pp. 2808–2817.

Лицензия Creative Commons
All articles posted on the site are available under the Creative Commons Attribution 4.0 Global License.