2-19-1

 

УДК 550.389.1

https://doi.org/10.21440/2307-2091-2019-2-7-19

W. R. Gaweish et al. / News of the Ural State Mining University. 2019. Issue 2(54), pp. 7-19

Relevance. The study area is located at Mandisha village, El-Bahariya Oasis, Western Desert, Egypt. It is suffering from lack of surface water. So it’s important to search for another source of water (as groundwater) that important for everything for live. Based on the literature studies; the main aquifer in the study area is located in the Nubian sandstone aquifer, which located directly on the upper surface of the basement rocks. So the depth of the lower surface of the Nubian sandstone aquifer is equal to the depth of the upper surface of the basement rocks in the study area.
Objectives of the study. This study is used the analysis and interpretation of magnetic data to determine the depth of the basement rocks and the structural elements that affected on the basement rocks at Mandisha area in El-Bahariya Oasis, Western Desert, Egypt.
Research methodology. The Magnetic methods were applied to achieve these goals. One hundred and seventy four magnetic stations were acquired by Overhauser magnetometer instrument (GSM-19 “V7.0”). The magnetic data were processed by using Geosoft Oasis Montaj program. 2D Magnetic Profiles and 3D Magnetic Modeling were established to construct basement relief map in the study area. First Vertical Derivative Technique, Source Edge Detection Method and 3D Euler Deconvolution method were established to determine the locations and directions of faults that affected on the Basement Rocks in the study area.
Work results. The most important results of this study: 1. The depth of the basement rocks in the study area ranges from 1200 m to 2000 m. 2. The northeastern, northwestern and western parts of the study area are characterized by shallow depth of the basement rocks, while the southern and eastern parts of the study area are characterized by deep depth of the basement rocks. 3. Deep faults (more than 2000 m) were located at northern part of the study area. 4. The main direction faults in the study area are NE–SW and E-W direction.

Keywords: Magnetic Data Interpretation, 3D Euler Deconvolution, 2D Magnetic Profile, 3D Magnetic Modeling, Basement Rocks, faults, Geosoft, El-Bahariya Oasis, Western Desert, Egypt.

 

REFERENCES

1. Moustafa A. R., Saoudi A., Moubasher A., Mohamed I., Molokhia H., Schwartz B. 2003, Structural setting and tectonic evolution of the Bahariya Depression, Western Desert, Egypt. GeoArabia, vol. 8, no. 1, pp. 91–124.
2. Egyptian Military Survey “EMS” Topographic Map of El-Bahariya Oasis. Scale 1:500000, Sheet No. NH 35 SE BAHARIYA, Western Desert, Egypt. 1986.
3. Diab M. S. 1972, Hydrogeological and Hydrochemical studies of the Nubian Sandstone water-bearing complex in some localities in United Arab Republic. PhD Thesis, Assiut University, Egypt.
4. Said R. 1962, The Geology of Egypt. Amsterdam, Netherlands, Elsevier, 377 p.
5. GEM GSM-19 Cost Effective and High Precision Overhauser Magnetometer. URL: http://www.gemsys.ca/rugged-overhauser-magnetometer
6. Geosoft Oasis Montaj Program Geosoft mapping and processing system: version 6.4.2 (HJ). Inc Suit 500, Richmound St. West Toronto, ON Canada N5SIV6, 2007.
7. Baranov V. 1957, A new method for interpretation of aeromagnetic maps: pseudo-gravimetric anomalies. Geophysics, vol. 22, no. 2, pp. 259–383. https://doi.org/10.1190/1.1438369
8. Baranov V., Naudy H. 1964, Numerical calculation of the formula of reduction to the magnetic pole. Geophysics, vol., no. 29, pp. 67–79. https://doi.org/10.1190/1.1439334
9. Baranov V. 1975, Potential fields and their transformation in applied geophysics. Geo-exploration Monographs, no. 6. Gebruder, Borntraeger. Berlin–Stuttgart, Series 1–6.
10. Bhattacharyya B. K. 1967, Some general properties of potential field in space and frequency domains. Geoexploration, vol. 5(3), pp. 127–143. https://doi.org/10.1016/0016-7142(67)90021-X
11. Bhattacharyya B. K. 1965, Two-dimensional harmonic analysis as a tool for magnetic interpretation. Geophysics, vol. 30, no. 5, pp. 829–857. https://doi.org/10.1190/1.1439658
12. El-Hussaini A., Henain E. F. 1975, On the computation of second derivative from gravity data. Presented in the 9th Arab Petroleum Congress, Dubai.
13. Elkins T. A. 1951, The second derivative method of gravity interpretation. Geophysics, vol. 16, issue 1, pp. 29–50. https://doi.org/10.1190/1.1437648
14. Evjan H. M. 1936, The place of the vertical gradient in gravitational interpretation. Geophysics, vol. 1, issue 1, pp. 127–136. https://doi. org/10.1190/1.1437067
15. Henderson R. G. 1960, A comprehensive system of automatic computer in magnetic and gravity interpretation. Geophysics, vol. 25, issue 3, pp. 569–585. https://doi.org/10.1190/1.1438736
16. Henderson R. G., Ziettz L. 1949, The computation of second vertical derivative of geomagnetic fields. Geophysics, vol. 14, issue 4, pp. 517–534. https://doi.org/10.1190/1.1437558
17. Rosenbach O. 1953, A contribution to the computation of second derivative from gravity data. Geophysics, vol. 18, issue 4, pp. 894–912. https://doi.org/10.1190/1.1437943
18. Blakely R. J., Simpson R. W. 1986, Approximating edges of source bodies from magnetic or gravity anomalies. Geophysics, vol. 51, issue 7, pp. 1494–1498. https://doi.org/10.1190/1.1442197
19. Reid A. B., Allsop J. M., Granser H., Millett A. J., Somerton I. W. 1990, Magnetic interpretation in three dimensions using Euler deconvolution. Geophysics, vol. 55, issue 1, pp. 80–91. https://doi.org/10.1190/1.1442774
20. Klingele E. E., Marason L., Kahle H. G. 1991, Automatic interpretation of gravity gradiometeric data in two dimensions: vertical gradient. Geophysical Prospecting, vol. 39, no. 3, pp. 407–434. https://doi.org/10.1111/j.1365-2478.1991.tb00319.x
21. Harris E., Jessell W., Barr T. 1996, Analysis of the Euler deconvolution techniques for calculating regional depth to basement in area of complex structures. SEG Annual Meeting, 10–15 November, Denver, Colorado.
22. Marson L., Klingele E. E. 1993, Advantage of using the vertical gradient of gravity for 3-D interpretation. Geophysics, vol. 58, issue 11, pp. 349–355. https://doi.org/10.1190/1.1443374
23. Stavrev P. Y. 1997, Euler deconvolution using differential similarity transforms of gravity or magnetic anomalies. Geophysical Prospecting, vol. 45, issue 2, pp. 207–246. https://doi.org/10.1046/j.1365-2478.1997.00331.x
24. Barbosa V., Sliva J., Medeiros W. 1999, Stability analysis and improvement of structural index in Euler deconvolution. Geophysics, vol. 64, issue 1, pp. 48–60. https://doi.org/10.1190/1.1444529
25. GMSYS Programs Gravity and Magnetic modeling, version 6.4.2 (HJ). Inc Suit 500, Richmound St. West Toronto, ON Canada N5SIV6, 2007.
26. GMSYS-3D Programs Gravity and Magnetic modeling, version 6.4.2 (HJ). Inc Suit 500, Richmound St. West Toronto, ON Canada N5SIV6, 2007.

 

Лицензия Creative Commons
All articles posted on the site are available under the Creative Commons Attribution 4.0 Global License.