2-18-16

Improving the screening surface and the efficiency of the split rock mass of stationary screens

A. V. Yudin, V. S. Shestakov, M. K. Abdulkarimov

 

DOI http://dx.doi.org/10.21440/2307-2091-2018-2-114-121

A. V. Yudin et al. / News of the Ural State Mining University 2 (2018) 114-121

 

The relevance of the work is conditioned by the need of the construction industry in better preparation of raw materials, and to improve the equipment efficiency. The problem faced by enterprises is the division of the stale rock mass into fractions. The screens installed are clogged and cease to perform their function.
The purpose of the work is to analyze the working process of fixed grate screen and to develop technical proposals to improve the efficiency of the screening of hard rock mass.
Research methodology: workflow modeling of stationary bar screen.
Results. In technological complexes fixed screens perform operations of preliminary separation of rock mass (often before the primary crushing). With the simplicity of the design, they have a low efficiency of screening, they require an increased area of the sifting surface, have a significant high-altitude dimensions. Operating experience has shown that the sifting surface of grate screens with an open slit is often clogged and requires cleaning. At a distance between the screen 40–50 mm separation of the curved rock mass is particularly difficult. One of the reasons for this is the lack of methods for selecting the parameters of the screen. Practically the main execution of fixed screens is performed in a two-support version with a transverse arrangement of the connection-beams and with a low height of the screens. Sifting surfaces are made linear.
Summary. The mathematical model and technique considered in the article allow to determine the basic parameters of fixed screens. An option of improving fixed screens by changing the design of the PP gives it free and forced multi-amplitude oscillations. This will improve the efficiency of the separation of hard rock mass 5–10 %, expand the scope of screens for the separation of clay fractions 40–100 mm. This will also reduce the construction height and installation angle of the screen by 20 %.

Keywords: screen; side; the screening surface; a screen; a beam; a hinge; an elastic bearing; motor-vibrator; mathematical model; amplitude; oscillation frequency.

 

REFERENCES

1. 1972, Spravochnik po obogashcheniyu rud. Tom 1. Podgotovitel’nyye protsessy. Pod. red. V. A. Olevskogo [Guide to ore dressing. Vol. 1. Preparatory processes. Edited by V. A. Olevsky]. Moscow, 448 p.
2. Vaisberg L. A., Korovnikov A. N., Trofimov V. A. 2017, Modernizatsiya tekhnologicheskikh tsiklov grokhocneniya na osnove innovatsionnogo oborudovaniya (k stoletiyu instituta "Mekhanobr" [Innovative re-equipment of screening circuits (to commemorate the 100th anniversary of the Mekhanobr Institute)]. Gornyi zhurnal [Mining journal], no. 1, pp. 11–17.
3. Kartavyy A. N. 2013, Vibratsionnyye agregaty dlya pererabotki mineral’nogo i tekhnogennogo syr’ya. Modelirovaniye i elementy raschyota pokriteriyam energo- i resursoeffektivnosti [Vibration units for processing of mineral and man-made raw materials. Modeling and calculation elements according to the criteria of energy and resource efficiency]. Moscow, 328 p.
4. Gazaleyeva G. I., Tsypin E. F., Chervyakov S. A. 2014, Rudopodgotovka, drobleniye, grokhocheniye, obogashcheniye [Ore preparation, crushing, screening and beneficiation]. Ekaterinburg, 914 p.
5. Nazarov K. S. 2009, Analiz konstruktsiy vibratsionnykh grokhotov dlya klassifikatsii trudnogrokhotimykh materialov [Analysis of vibration screens structures for classification of hard materials]. Gornyy informatsionno-analiticheskiy byulleten [Mining Informational and Analytical Bulletin], no. 6, pp. 383–393.
6. Volkov E. B., Lyaptsev S. A. 2013, Vliyaniye ugla naklona rabochey poverkhnosti vibratsionnogo grokhota na effektivnost’ grokhocheniya [Effect of angle of inclination of the working surface of the vibrating screen on the effectiveness of screening]. Sovremennyye problemy nauki i obrazovaniya [Modern problems of science and education], no. 4, p. 8. URL: www.science-education.ru/110-9642
7. Volkov E. B., Lyaptsev S. A. 2012, Kompyuternoye modelirovaniye protsessa grokhocheniya [Computer simulation of the process of screening]. Mezhdunarodnyy zhurnal experimental’nogo obrazovaniya [International journal of experimental education], no. 4. pp. 49–50.
8. Weisberg L. A. 1986, Proyektirovaniye i raschyot vibratsionnykh grokhotov [Designing and calculation of vibrational screens], Moscow, 144 p.
9. Yudin A. V. 2016, Modelirovaniye vynuzhdennykh kolebaniy proseivayushchey poverkhnosti inertsionnogo grokhota s konsol’no zashchemlyonnymi kolosnikami [Modeling forced vibrations of sifting surfaces of the inertial screen from the console caught in the grate]. Izvestiya vuzov. Gornyi zhurnal [News of the Higher Institutions. Mining Journal], no. 6, pp. 63–70.
10. Yudin A. V. 2016, Otsenka parametrov svobodnykh kolebaniy proseivayushchey poverkhnosti inertsionnogo grokhota s konsol’no zashchemlyonnymi kolosnikami [Estimating the parameters of free vibrations of sifting surfaces of the inertial rumble from the console caught in the grate]. Izvestiya vuzov. Gornyi zhurnal [News of the Higher Institutions. Mining Journal], no. 5, pp. 52–59.
11. Sladkovskiy, Yudin A. V., Komissarov A. P., Lagunova Yu. A., Akhmetova M., Stolpovskikh I. N. Calculation of parameters and design of the movable transfer station with vibrating screen feeder for the conveyor system of deep queries. International journal of Engineering and Technology (UAE), 7(2), pp. 148–151.
12. Shishkin E. A., Lebedev A. I. 2016, Issledovaniye parametrov vibratsionnogo grokhota s primeneniyem instrumentov imitatsionnogo modelirovaniya [Investigation of parameters of the vibrating screen using tools of simulation modeling]. Uchyonyye zametki TOGU [Scientists notes PNU], vol. 7, pp. 281–286. URL: http://pnu.edu.ru/ru/ejournal/about/This email address is being protected from spambots. You need JavaScript enabled to view it.
13. Ferrara G., Preti U., Schena G. D. 1988, Modeling of screening operations. International Journal of Mineral Processing, vol. 22, no. 1–4, pp. 193–222.
14. Rumyantsev S., Tarasov D. 1990, Numerical Simulation of Non-linear Dynamics of Vibration Transport Machines in Case of Three Independently Rotating Vibration Exciters. Recent Advances in Applied Mathematics: Proceedings of the American Conference on Applied Mathematics (AMERICAN-MATH’10), Harvard University, USA, January 27–29, 2010, pp. 191–194.
15. Subasinghe G. K. N. S., Schoap W., Kelly E. G. 1990, Modeling screening as a conjugate rate process. International Journal of Mineral Processing, vol. 28, pp. 289–300.

Лицензия Creative Commons
All articles posted on the site are available under the Creative Commons Attribution 4.0 Global License.