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Abstract
The relevance of the work. Well-log analysis and 3D seismic method are combined to evaluate the nature of fluids and
reservoir characteristics in the Douala-Campo basin (DC). Scientific research that exhibit the important geologic and
geophysical settings of this basin is lacking.
The purpose of the work. The successful investigation of these areas is possible if the stratigraphic and petrophysical
properties of the reservoir are properly evaluated.
Research methodology. Extracting facies types from 3D seismic sections is a rapidly evolving discipline that facilitates
the development of reservoir prediction models. Therefore, a 25 m x 25 m seismic grid associated with Gamma-Ray
log (GR), Neutron (Nphi) log, resistivity log, sonic log, and density (RHOB) log have been performed.
Results and Conclusions. The results highlight the sedimentary environment and facies, porous-permeable clay
banks, clay content, porosity, saturation and the nature of the fluids in the reservoir. The petrophysical evaluations
indicate potential petroleum reservoirs, mainly sandy-clay with 3.81-29.47% volume, 17.37-27.85% porosity and
27.74-56.02% water saturation. The fluids present in the reservoir is oil, gas and water. This research will encourage
hydrocarbon (HC) exploration in the DC Basin by adopting strategies in which seismic stratigraphy combined with
well data will be the most likely means of providing drilling targets for more independent operators. The results of this
study will serve future prospectors in the neighbouring oil and gas fields of our study area. Significant advances have

been made to ensure future exploration success.
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Introduction

As a result of the separation of the African and South
American tectonic plates, the opening of the South Atlantic (from
the Berriasian to the Upper Aptian) began in the early Cretaceous
as a gradual diachronic North-South process [1, 2]. Due to a
marine incursion, this opening introduced a range of salt basins,
giving rise to various basins: Namibia, Benguela and Cuenza
(Angola), Douala-Campo (DC), Namibia, Rio Del Rey (RDR)
(Cameroon), and Rio Muni (Gabon/Equatorial Guinea) [3]. The
volcanic line marks the edge between the two coastal basins for
Cameroon. The RDR basin is the southern extension of the Niger
Delta, while the DC basin develops along the Gulf of Guinea [4].
Cameroon seeks to increase its production in hydrocarbon by
promoting several oil field block in the Douala-Campo basin (DC)
basin. The exploration of new hydrocarbon reserves is known to
be expensive, so it is necessary to use low-cost methods to locate
and quantify these reservoirs within the limitations of geological
models. The derivation of stratigraphic insights from seismic data

has its origins in the early 1970’ with the advent of improved
2D seismic data. The discipline of seismic stratigraphy traces its
roots to the landmark publication of AAPG Memoir 26, which
summarized the work of Peter Vail and his colleagues at Exxon
Production Research Company [5]. The seismic expression of
stratigraphic features in a 3D seismic cube depends on which way
the data volume is being viewed; vertical transect or horizontal
map view [6].

Well-logging data can accurately detect reservoir fluid
volume and composition, if interpreted correctly and ideally
calibrated to core data [7-13]. Gamma logs are used to reveal
lithology such as shale beds. Similarly, gamma logs are used to
identify other lithology such as dolomites and limestone when
available from core data. Resistivity logging is used to discern
water and hydrocarbons in reservoir rock interstices. It can be used
to determine the oil-water contact and the true resistivity of the
formation [14]. Hydrocarbons are encountered in ecological traps,
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which may be stratigraphic, structural, or a combination of both.
Most traps in the Niger Delta, according to Doust and Omatsola
(1990) are structural [15]. Oil drilling is an expensive undertaking,
especially as supplies of hydrocarbons decline. Undiscovered
deposits are located in intricate geological environments, so
capitalizing on new developments is essential [16]. Keys to
quantifying producible hydrocarbons are reservoir characteristics,
in particular the water saturation thickness, reservoir, porosity
and zone extent (Schlumberger, 1998). Information on these
parameters is relevant and serve as input data for the volumetric
analysis of the reservoir, i.e. the volume of hydrocarbons in place
[17]. Many oil wells drilled in the DKC basin based on 2D seismic
data have failed due to poor reservoir quality, and according to
the drilling completion reports, these wells may not have been
optimally positioned with respect to the reservoir target. This
study aims to determine the nature of the hydrocarbons and to
characterize the reservoirs in the study area. This is achieved by
identifying the nature of the fluids, the potential reservoirs and by
estimating petrophysical parameters from well logs. This research
will encourage hydrocarbon (HC) exploration in the DC Basin by
adopting strategies in which seismic stratigraphy combined with
well data will be the most likely means of providing drilling targets
for more independent operators [18-20]. The results of this study
will serve future prospectors on the neighbouring oil and gas
fields of our study area. Significant advances have been made to
ensure future exploration success in the DKC basin of Cameroon.

Location and geology of the study area

The DKC basin is located between 9°04’-10°04" East
longitude and 2°18’-4°32" North latitude (Fig. 1). The DKC basin
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encompasses an area of 19,000 km? The DKC Basin is divided
into two sub-basins, one in the south, the Kribi-Campo Sub-basin,
and one in the north, the Douala Subbasin [21]. Hydrocarbon
exploration in the DKC basin began in the fifties at the onshore
portion. The offshore part of this basin was explored in the 1960s
and was primarily concentrated in the shallow water Kribi-Campo
sub-basin, targeting the inclined cretaceous fault provinces
that extend to onshore where oil derived from the Cretaceous
formation is currently produced [21]. The Douala basin geology
history begins in the Lower Cretaceous with the discontinuity that
separates Africa and South American continents. The formation
of the first deposits of the lower Mundeck formation begins the
filling of the basin during this initial rift phase [22, 23]. This filling
starts with the Aptian in the Douala sub-basin and the Barremian
in the Kribi-Campo sub-basin [23, 24]. Lower Mundeck
continental deposits include sandstone (base sandstone), dark
gray shale clay, organic-rich marl, thin limestone beds, and
conglomerate [25]. Toward the end of the Aptian, during a
transition period, the first marine incursions produced a salifer
series that spread from Cameroon to Angola [26]. There are three
separation intervals from the Albian to the current, during which
a passive margin was formed by the accumulation of sedimentary
deposits in discrepancy, separated by cuts caused by orogenesis
phases [25, 27].

The significant marine transgression of the Drift I phase
in Albien results in the formation of the upper Mundeck
layers, which are composed of sandstone, argillite, organic
clay, and carbonate past. This succession usually ends with the
“ Cenomanian discordance’, which is the result of the start of
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Figure 1. Location map indication the seismic grid extent and well log position
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a regression that continues to the Turonian [28]. The Drift II
phase, which is linked to the Santonian’s Tectonian episode, is
separated from Phase I (Drift I) by a discontinuity caused by this
event. Following the latter, the formation of Logbadjek, made of
micro-conglomerate, sand, middle sandstone to rude and rare
limestone and clay intercalates, already begins in the Santonian
and continues at the lower campanien. The thick formation of
logbaba formed of sediments sailors of deep-sea water follows in
this one, in the upper campanien and the Maastrichthen. These
sediments are made up of fossilized argillitis with sand levels
and sandstone [4, 22]. The Mastrichtic Terminal and Danian gap
highlight the Cretaceous Passage-Tertiary in all Western African
basins. Tertiary sedimentation in the Douala Basin begins with
the filing of NKAPA training by simple subsidence of the passive
margin. This lower Paleocene-Eocene formation is composed of
silt, sand lentils, dolomite, clay literate, argillite, and fine friable
sandstone with coarse [4, 29].

During the Eocene, sedimentation is abruptly halted by a major
episode of medium tertiary lifting, resulting in the great stratigraphic
gap of lower higher-oligocene Eocene. The Songlaba formation,
oligoMiocene, produces a subsidence and beginner at the same
time as the Drift III phase at the end of the Oligocene [27]; it is
characterized by marls, sandstones, silts, and clays with interstracted
sand lentils and occasionally shell limestones. The Cenozoic series
concludes with the formations of Matanda (Pliocene) and Wouri
(Pleistocene) made of fine sand in rough, clay, and volcanic tufa after
a final stratigraphic gap at the end of the Miocene.

Seven formations (Fig. 2) were described in the Douala sub-
basin based on the previous works [3, 22-24, 27, 30]. Mundeck
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formation is the oldest to the most recent. The term “Mundeck
Formation” refers to the lower Cretaceous Age Section of the Sismic
discordance [31]. This formation is the oldest, dated C’enomanian
[23,31],and it is located in the precarambrian base discrepancy. It is
located in the Moungo Valley, near Mundeck, in the northern part
of the Douala sub-basin. Mundeck is made up of continental and
fluvio-deltaic deposits with some marine facies intercalates [23].
It is a thick layer composed of base elements, medium to coarse
sandstone, micaceous fine sandstone, carbonneous and carbonate,
black shale micas, argilites, limestones, and marls [4, 32].

The logbadjeck formation is in concordance or
discordance with the Mundeck formation, as a result of
Turonian regression and the erosion of the base and basic
sandstone. It is made up of microconglomerates, sands, rough
medium sandstones, fossiliferous limestone and sandy clay
intercalations, sandstone, and marn-limestone intercalates [4].
It has been eroded to the east due to Turonian flexuration. The
formation of logbadjeck from the outcrop is well represented
in the Moungo Valley, where it represents deposits of the
basin’s external platform. Logbajeck’s formation is dated as
Cenomanian and Campanian [4, 33, 34]. Sedimentation is
primarily fluvio-deltaic at the base. The Formation of logbaba
is a thick sedimentary layer dominated by argillites, with a
summit characterized by an upper Cretaceous discrepancy [4].

The logbaba formation sediments are marine, deposited
in deep water with rapid landfill, a feature of the development
of West African basins with deepwater argilites. This field is
made up of sandstones, sands, and fossilized argillitis [4, 22]; it
is Campanien-Maastrichthen dated [4, 31].
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The Nkapa formation is underlain by Cenozoic
unconformities, indicating Tertiary sedimentation by passive
margin subsidence. Its formation comes to an end abruptly in
the Middle Eocene after a major episode of uplift and erosion of
the African margin. The Nkapa Formation, which separates from
the Logbaba Formation to the east and southeast of the sub-basin,
is heavily eroded. It can be seen in the Moungo Valley outside the
outcrop [35]. It is composed of shales, calcareous clays, arkosic
sandstones, fine friable sandstones with crusts, silts, sands, and
dolomitic lenses and is of Lower Paleocene age [4, 29]. Logar
(1983) describes the deposit context as a coexistence of continental
and marine environments. From a coastal clay-silt environment,
the environment evolves to the south towards a more marine
environment marked by turbidite sandy deposits [4].

The formation of Songelaba is the result of subsidence and
resumption of sedimentation following the important phase of
lifting and erosion responsible for the large stratigraphic gap
of the higher Eocene [21, 23, 35]. Because of the erosion of
upper ecene and lower oligocene sediments, the formation
of Songelaba is dated higher-miocene lower Oligocene [23, 36].
It is distinguished by marls and lentils of interstracted sands
in intercalation [4, 22] and, on rare occasions, by shell
limestone [31]. Clays cover the transgressive sandstones and
silts that dominate the lower part. Matanda (Superior-Pliocene
Miocene) formation is dominated by interstratified deltaic
facies and volcanic tuffs [4, 22]. These are coarse sands that
begin at the bottom and end at the top, alternating with pockets
of clays that are occasionally intersected with basalttes [37].

Matanda formation dumped in Tiko and the Douala
basin’s coastal area.

The Wouri (Pliocene-Pleistocene) formation is
distinguished by coarse gravel and gravel with clay matrix
[4]. There is often evidence of lava and volcanic tufas. Wouri
sediments are the result of estuarine sedimentation at the
mouths of the Wouri and Dibamba rivers.

Materials and methods

The evaluation of the oil potential of the southern
part of the DKC basin is carried out through the analysis of
conventional 3D seismic and well log data. The 3D seismic
database investigated is located in offshore part. A 25 m x
25 m grid-oriented NS-EW was generated and two vertical
wells namely P1 and P2 have been used for well log recording.
Seismic data analysis involved coordinate conversion, data
loading, well to seismic tie using synthetic seismogram,
horizon and facies illustration, amplitude map generation [38].

Seismic calibration is done using two logs (sonic,
density) and checkshots. The sonic is first calibrated, then
the multiplication of the sonic and the density will generate
the acoustic impedance and the coefficient of reflectivity.
This will then be convoluted to an appropriate wavelet

Table 1. Petrophysical parameters of reservoir in well P1
Ta6nuua 1. NeTpocdmsnyeckne napameTpbl Nnacrta B ckBaxuHe P1
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extracted from the seismic to generate the synthetic seismo-
gram. It will subsequently make to better find the time-depth
correspondences or to better correlate.

After seismic calibration, therefore come the seismic
interpretation. The method used is manual picking and semi-
automatic tracking [39]. It is a completely manual operation
which aims to point at an object of interest using the desktop
mouse and the tracking is both manual and software assisted. At
each point, the software researches similar information (polarity,
amplitude and similar frequency) between the different points,
respecting the principles of stratigraphy. The different points will
thus be joined to allow obtaining a horizon at the end of the
process. Then the amplitude map was generated.

The main logs used for this study are the Gamma-Ray
log (GR) which allowed us to delineate the porous-permeable
clay banks and estimate the clay content in each reservoir;
the Neutron log (Nphi) in combination with the density log
(RHOB), this log allowed us to determine the porosity of the
formations and to reconstruct the lithology crossed by each
well; the density log (RHOB) allow us to identify the fluids in
the reservoirs and to locate the gas/oil and oil/water contacts in
comparison with the neutron and resistivity logs; and resistivity
logs allowed us to calculate saturations and determine the
nature of the fluids.

The petrophysical assessment can be classified into two
successive stages: Qualitative assessment: Quick look analysis
and Quantitative evaluation (single-plot analysis).

This method of rapid interpretation of logs developed
by Serra (1979) allows a qualitative analysis, which requires
practically no calculation, mainly using the comparison of logs
with each other by superposition. This evaluation method is
subdivided into two stages [40]:

- Identification of lithology, the method used is the cutting
of the logs into electrofacies zone by highlighting the different
polarities and allows to delimit the possible zones of being
reservoirs; to do this we look at the positions of the neutron
log (Nphi) and the density log (RHOB);

- Determination of porosity and type of hydrocarbon,
a certain number of conditions must be fulfilled for the
determination of these parameters.

The single-plot analysis it is an analysis that provides
information on the petrophysical parameters (shale volume,
porosity, saturation, permeability, etc.). In order to interpret
measurements quantitatively, the electrical resistivities measured
depend on the natural geological conditions and the action
of the drilling fluids used. It is important to bring the various
resistivities to the temperature of the formation considered, for
this it is necessary successively to determine the petrophysical
parameters such as: the volume of shale (V) by using Eq. (1);
the effective porosity (PhiE) and water saturation (S ).

Reservoirs Depth, m, TVD Thickness, m V., % PhiE, % S,, % Lithology Natural fluids
R1 3831-3945 114 15.3 24.85 53.98 Sandy shale Gas
R2 4072-4105 33 5.04 19.06 55.91 Sand Oil
R3 4235-4305 70 7.87 18.97 54.91 Sand Oil
R4 4323-4431 108 3.81 20.81 54.03 Sand Oil
R5 4463-4549 86 7.36 18.05 56.02 Sand Oil
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To achieve the objectives, we carried out the following
steps: (i) Sampling of the number of electrofacies, (ii) Identify
the roofs and bases of the reservoirs selected, (iii) Then
proceed to the calculation of the petrophysical parameters, (iv)
Determination of the volume of shale from the GR [41]. Prior
to these tasks, the baseline of the sand and shale needs to be
calibrated taking the average of the log GR

GRread - GRmin
= (1)

v, =1, =
GRma _GRmin

sh GR

X

where GR _, is the GR value of the bank read directly from the
log; GR__ is the minimum GR value of the same bank; GR
is the maximum GR value of the same bank, all of them in the
API unit. I, is the Gamma ray radiation index and V, is the
Volume of shale;

- Determination of the porosity: Log Rhob calibration:
The log Rhob must be calibrated according to the shale peak
and then calculate the effective porosity (PhiE) using the
standard formula [42]. The porosity density is obtained from
Wryllie’s Eq. (2)

pb_pma

G, =" )
P, =P

where &, is the overall density read opposite the given study

level in, g/cm?®; p,,P,,P,, are the density of the matrix, the fluid

density and the porosity given by density tools respectively.
Alongside this density porosity, the porosity is determined

by the “Quick look” method, which combines neutron and
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density logs porosity (J,,9,). The total &, and effective
porosity &, are plotted by the following Eq. (3) and (4):
®N - ®D

T >

2

%) (3)

and
G, =3,0-V,). (4)

Neutron log calibration: this involves bringing the log
neutron back to the shale peak and reading the corresponding
value;

- Determination of water saturation:

Prior to this, we must first configure the calculation
formula, the one used in our work is “Dual Water”, this is a
formula developed by the Americans [43] and it turns out to
be proportional to our environment (sandy shale). Next, you
have to calibrate the density and the volume of shale previously
calculated from the GR, and finally determine the matrix
parameters (a, n and m) used in the Archie Eq. (5).

1 mQn
S DrSny 1+BQV,, ’ 5)
R @R, S,
. I/shgsh .
with OV = N S, — Total water saturation; V, - Volume
T

of clay; @, - Clay porosity; a — Formation factor; n — Saturation
exponent, which can vary between 1.2-2.2; m - Cementation
factor.

Due to the water saturation, S, it will be possible to
determine the hydrocarbon saturation in the virgin zone S,
with the following Eq. (6):
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Figure 3. Synthetic seismogram generated by the checkshot and sonic log data in well P1
PucyHok 3. CuHTeTU4ecKasi ceicMorpaMmma, nosly4eHHasi No A4aHHbIM KOHTPOSIbHOIO M aKyCTU4YECKOTrO KapoTaxa B CKBaXuHe P1
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Figure 4. Visualisation of well on the seismic profile
PucyHok 4. Busyanusaums ckBaXvHbl Ha CeMCMUYecKoM npodune

Figure 5. Inline (7) and crossline (2) indicating facies
PucyHok 5. MNpamas (7) n nepekpecTHas nNuHUA (2) ¢ ykazaHuem
caumn

S,,=1-S; (6)

- Nature of fluids determination.

It is noted that, in the oil-bearing reservoir, GR and
Density-Neutron all deflect to the left. Only resistivity deflects
to the right. GR reads lower due to lower radioactivity of Th,
K and U. Resistivity responds to non-conducive hydrocarbon,
giving higher resistivity. Density-Neutron reads higher
porosity in reservoir.

Figure 6. Seismic profile showing the interpreted horizons (H1
and H2)

PucyHok 6. Cencmuuyeckum npodunb,
MHTepnpeTUpoBaHHble ropu3oHThbl (H1 n H2)

noKasbiBaloLWUn

In the gas reservoir, GR deflects to the left; Resistivity,
right; Density left; and Neutron, right. GR reads lower due to
lower radioactivity of Th, K and U. Resistivity responds to non-
conducive hydrocarbon, giving higher resistivity. Density gives
lower bulk density due to lower gas density. Neutron reads low
apparent low porosity in gas zone due to lower neutron-hydrogen
interactions in gas as compared to neutronhydrogen interactions
in water. The use of petrophysical cutoffs for net pay demarcation
are as follow: Gr_ ;= <0.45; PhiECutoff =>0.1;S,_ .= 0.70.

Results and discussion

1. Seismic well tie result

Fig. 3 above shows the synthetic seismogram generated by
the check shoot and sonic log data in well P1. The numbers
represent the seismic traces. In 1, we observe the original
seismic traces obtained after processing the signals; in 2, it is
a synthetic trace generated after calibration. This seismogram
allowed us to set the reflectors in the depth range where the
logs were recorded. The correlation coefficient between seismic
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Figure 7. Amplitude (ms) map of the H1 horizon, indicating potential sand accumulation in the areas of high amplitude
PucyHok 7. Kapta amnnutygbl (Mc) ropusoHTa H1, nokasbiBalowas noreHunanbHoOe CKOnfeHne necka B 061acTsix BbICOKOM aMnnuTyabl

Figure 8. RMS amplitude map (H1) generated on 3D coherence
attribute

PucyHok 8. Kapra cpegHekBagpaTuyHbix amnnutyp (H1),
co3fjlaHHas Ha OCHOBE TPeXMepHOro aTpubyTa KorepeHTHOCTN

T

Figure 9. Amplitude (ms) map of the H2 horizon, indicating
potential sand accumulation in the areas of high amplitude
PucyHok 9. Kapta amnnutya (mc) ropusonTa H2, ykasbiBatowas
Ha BO3MOXXHOE CKOMNIeHue necka B 0611acTsix NoBbILEHHOIo
coaepXaHusa necka

trace and synthetic trace at the point of intersection obtained
at the end of this setting is greater than 0.65, i. e. 65%, the
setting of the seismic horizons in time using the data from the
P1 well was a success. However, we can note small differences
between the amplitudes observed on the surface seismic and
synthetic trace. This difference is explained by the choice of
amplitude compensation laws used for the two types of data.
For this purpose, we can visualize the well on our seismic
profile converted to depth (Fig. 4).

2. Seismic interpretation profiles

In the inline profile, we observe four facies represented by
the letters a, b, c and d (Fig. 5). The discontinuous facies (a):
which are linked to small systems of slightly spaced normal
faults, known as “polygonal fault systems” Polygonal faults
have been observed along the West African margin, off Angola
[44] and in Namibia. They can also be seen on the Crossline
profile represented by the letter (e); The monoclinal facies (b):
are generally linked to deep water channels controlled by high

turbidity currents. The individual mounds are characterized
by a continuous convex shape from low to high amplitude and
aggressive reflections; The facies in the hollow filling of the
channels (c): are almost present over the entire Inline profile with
slightly varying depths. The presence of these channels can be
explained by the first marine incursions into open space by the
first drift phase following the initial rift phase and during which
the first oceanic crust formed; The chaotic facies (a): are mainly
present at the eastern extension of the basin and can result from
more or less coarse and heterogeneous inputs deposited in the
sea level bed and at the end of the ascent. Moreover, when these
are in depth, they can reflect poor data quality.

In crossline profile, we observe two facies represented by
the letters (e) and (f) (Fig. 5):

The discontinuous (e) facies and the parallel (f) facies,
which present reflectors with high amplitude and good
lateral continuity and high frequency. These facies reflect a
sedimentary environment of moderate energy.
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Figure 10. The litho-saturation plots of reservoir 1 of well P1
showing the negative separation between neutron and density
logs and could indicate the presence of gas
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Figure 12. The litho-saturation plots of reservoir 3 of well P1
PucyHok 12. Npacdumkm nuToHacbIwWweHMs nnacta 3 ckBaxuHbl P1
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Figure 11. The litho-saturation plots of reservoir 2 of well P1
showing more crossed behaviour between neutron-density logs
which could indicate the presence of oil

PucyHok 11. Mpacdukn nMTOHACBLIWEHHOCTU NiacTa 2 CKBaXUHbI
P1, nemoHcTpupytome 6onee nepekpecTHoe NoBeAeHNEe MeEXAY

AaHHbIMUA HeﬁTpOHHO-I‘IﬂOTHOCTHOFO KapoTaxa, 4YTO MOXeT
YKa3biBaTb Ha Hanun4ue He(*)TI/I
0 GR 19| Res |2 ATB  20]165 RAOB 26560 PRE 10 00 Bvw 0
(6881 {SH) (583) (%) (%)
0 THPH -0 100 Sw 0
(%) (%)
MD
1:1000
Meters.
] Il
il I
(! L[] T
T3 4325 | —
i a [N
il (1] il
H 450 HH
i TR
4375
il Il r
: il il -
w0 i
LTI T
w25 o
il ST _aRi
SN
L] Il
il 1] I
=== LI
Légende
Date:9/17/2021  Time: 1:54:30 PM L
[ Pay Summaries | le]e : Vsh IEa‘-l lAIglle .. Sable |:|P]'|_|E

= Net

Eormation  Range Het  \sh PhE S
Bamb_S4  4323.000-4431.030 111252 381 2081 24 5403

Figure 13. The litho-saturation plots of reservoir 4 of well P1
PucyHok 13. pacdhmku nutoHacbIiweHus nnacrta 4 ckBaxuHbl P1
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Figure 14. The litho-saturation plots of reservoir 5 of well P1
PucyHok 14. Ipacdhmku nutoHacbIweHus nnacrta 5 ckBaxuHbl P1
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Figure 15. The litho-saturation plots of reservoir 1 of well 2
PucyHok 15. N'padhmkm nuToHacbIWEeHHOCTU NnacTta 1 CKBaXuHbI 2

3. Structural model interpretation

Fig. 6 presents the results of the seismic interpretation
(tracking or picking) of the horizons H1 and H2, and the faults
with a step of 20 along the seismic volume to retrace the succession
and the continuity of the sedimentary deposits in this basin.

Horizon HI: the oldest, it is represented on the profile
by a yellow coloring (Fig. 6). This horizon is dated to the
Lower Cretaceous, more precisely to the Aptian. It has a high
amplitude to medium amplitude reflector along the W-E
direction. A steep slope is also following the West direction.

Horizon H2: the most recent and is represented on the
profile by a blue coloring (Fig. 6). This horizon is dated to the
Upper Cretaceous, more precisely to the Campanian. It has a
high amplitude reflector.

In terms of faults, the DKC basin does not have enough
faults, however we have spotted three on the H1 horizon.
These faults have almost a uniform NE-SW direction and are
normal in nature.

4. Amplitude map interpretation

The amplitude maps of the two horizons above show zones
with strong contrasts of amplitudes (circled zones) targeted by
the two existing boreholes. These zones are marked by red and
yellow colors with black outline (Figs. 7-9).

Upon analysis of said maps and the regional geological
context in this area of the DKC basin, more precisely in
the southern part, the sediments mainly come from the
continental shelf westward and were deposited in the seabed
by a phenomenon of progradation. Towards the southern end
of the basin, we note the presence of a channel visible on both
horizons, justified by the first marine incursions into the open
space by the first phase of drift following the initial rift phase
and during which the first oceanic crust is formed.

This channel therefore favoured the deposition and piling
of sediments in this area. Two main directions of sediment
deposition, to the east of the basin, the deposits of pure sands
deposited along the channels also visible on the H1 and H2
horizons. In view of these results, it clearly appears that the
Aptian (H1 horizon) and Campanian (H2 horizon) formations
constitute areas of interest in view of their prospectively.

5. Petrophysical interpretation

The high-amplitude areas of interest identified after
mapping the H1 and H2 horizons shown in figs. 7, 9, constitute
potential sand accumulation (therefore reservoirs). In view of
an active petroleum system in the DKC basin, these potential
reservoirs could be loaded with hydrocarbons.

Five (05) zone have been identified, after evaluation of the
physical parameters. The following results are obtained: according
to well logs of location P1 given in figs. 10-14, the porosity (neutron-
desity) logs of the retained reservoir shows less cross-behaviour in
reservoir 1 (Fig. 10), which could associated to gas, and perfect
cross-behaviour (Figs. 11-14) in reservoirs 2 to 5, which is a typical
indicator of the presence of the oil in these reservoirs.

A considerable increase in resistivity logs can show that
the fluids of the formations crossed are permeable and porous.
In addition, the effective porosity logs (PhiE) obtained confirm
the two hypotheses.

Table 1 shows the synthesis of the petrophysical parameters
obtained after evaluation in the reservoir 1. The depth is the
True Vertical Depth (TVD).

In Well P2, three (03) reservoirs (Figs. 15-17) were
identified, after evaluation of the petrophysical parameters, the
following results are obtained:

The logs from the P2 well show less crossed behaviour
(negative separation between neutron and density curves)

B. Y. Tichoue et al. Geo-petrophysical analysis of hydrocarbon in the Douala Campo basin, Cameroon//WU3Bectua YITY. 2024. Boin. 1(73). 41

C. 33-46.D0110.21440/2307-2091-2024-1-33-46



HAYKU O 3EMAE

g WSGR 150
(aaE)

res |2 P40 20[165 RHOB  265[60 PhiE
(Ot ) (ee3) (%)

&0 ™PH  -10
%)
MD
1:500
Meters

B

oy i
| &

I l ¥
1 E
“‘f .
¢ I

ass0
1 357"

i A 1

:

Figure 16. The litho-saturation plots of reservoir 2 of well 2
PucyHok 16. Mpachukn nuToHachbIWweHUsi nnacTta 2 CKBaXWUHbI 2

Table 2. Petrophysical parameters of reservoir in well P1
Tabnuua 2. MeTpodumsnyeckme napameTpbl NnacTa CkBaxuHbl P1
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Figure 17. The litho-saturation plots of reservoir 3 of well 2
PucyHok 17. pachmkun nuToHacbIWeHUsA nnacrta 3 CKBaXuHbI 2

Reservoirs Depth, m, TVD Thickness, m V., % PhiE, % S, % lithology Natural fluids
R1 3340-3369 29.35 29.47 20.97 47.45 Sandy shale Gas
R2 3508-3587 78.65 22.46 17.37 54.35 Sandy shale Gas
R3 3644-3738 94.07 15.54 20.11 52.91 Sandy shale Gas

density-neutron logs of the reservoirs selected (Figs. 15-17),
this could indicate the presence of gas in these reservoirs.
A variation in resistivity logs can show that the fluids of the
formations crossed are more or less permeable and porous
(sand-clay). In addition, the effective porosity logs (PhiE)
obtained confirm the two hypotheses. Table 2 below shows
the synthesis of the petrophysical parameters obtained after
evaluation of reservoir 2.

The assessment of the hydrocarbon potential of the
Cretaceous formations in the south of the Douala/Kribi-
Campo basin was carried out using 3D seismic and well data
analyses. Several hypotheses have been put forward to show
the productivity of the basin. The seismic interpretation shows
that the formations of the Lower Cretaceous (Aptian) and those
of the Upper Cretaceous (Campanian) present a petroleum
interest or potential reservoirs. Furthermore, the petrophysical
evaluation of the two existing wells in the study area does not
show a large enough number of potential reservoirs.

Considering the results obtained, it appears that, the
sediments come mainly from the continental shelf coming from
the East and were deposited on the seabed by a phenomenon
of gradation forming channels. Previous wells made based on
2D seismic could not reach the targeted prospects. Analysis of

two wells shows the presence of sand and shale banks at depths
of over 3000 m. Furthermore, the Net/Pay ratio gives the
exact proportion of hydrocarbons in these reservoirs. Thus,
the Cretaceous formations, more specifically the Logbaba
(Campanian) and Mundeck (Albian-Aptian) formations can
be considered as areas of interest from the oil/gas point of view.

Conclusions

This research presents an integrated study of well log analysis
and 3D seismic analysis for hydrocarbon reservoir an the nature
of fluids content investigation in the southern part of DKC oil
field. The geophysical investigation shows that the southern part
of the DKC basin exhibit a hydrocabure potential manifestation.
The 3D seismic gives potential areas of petroleum accumulation
on the amplitude maps. The nature of fluids consists of gas, gas/
oil and water. Five reservoirs have been identified in well P1 and
three in well P2. The reservoirs lithology encounter are mostly
the sand and sandy clay. The presence of petroleum interest
is observed to the South and East of the Aptian-Campanian
Formations; moreover, the logging data confirms the hypothesis
that the sandy reservoirs targeted by the two wells do not have a
high hydrocarbon potential. This work can serve for the future
petroleum field reservoir in the DKC basin and will avoid the
wrong position of future wells.
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[eo-neTpohmsnyeckmii aHaAU3 YrA€BOAOPOAOB B HacceriHe
Ayanra-Kamno, KamepyH

Bapexxa HOMCCUW TULLYE™

BaneHTnHa MuxainosHa YCOBA?**
Cukctyc HTEX'"

EneHna MuxainnosHa KOTEJIbHUKOBA?**

"YuusepcuteT BameHabl, bBameHga, KamepyH
2Poccuinckuii yHuBepcuTeT apyx6bl Hapogos (PYOH), Mockea, Poccus

AHHOTaLUwMs
AxmyanvHocmv pabomvl. AHaIM3 KapoTaXka CKBaXUH 1 MeTof, 3D-ceficMopasBegKy 00beAMHAIOTCA /IS OLLeHKN
xapakTepa QIIONIOB M XapaKTepPUCTUK Koytektopa B 6Oacceiine [lyama-Kammo (IIK). Hayunble mccnemoBanms,
pacKpbIBaloliye BayKHbIe TeoIornyeckie 1 reopuandeckue yCIoBusa 3Toro 6acceitHa, OTCYyTCTBYIOT.
Llenv pabomwvi. YcnemHoe MCClIefOBaHME STUX TEPPUTOPUIT BO3MOXKHO IIPM YCTIOBMM IIPAaBUIBHONM OLIEHKM
cTpaturpaduyecKux 1 neTpoduanIecKux CBOVCTB KOJIEKTOPA.
Memooonozus uccnedoeanus. VI3pnedeHue ¢anyaabHbIX TUIIOB U3 CelicMUYecKMX paspe3oB 3D sBmsercs
OBICTpOpa3BUBAIOLIEIICA AVCUUIUINHOI, KOTOpas objierdaeT pa3paboTKy MOJie/eli IPOrHO3MPOBAHNSA KOJTIEKTOPOB.
[TosTomy Oblna IOCTpOEHa ceiicMMYecKasi ceTKa pasMepoM 25 x 25 M, cBsisaHHasg ¢ ramma-kapotaxeMm (GR),
HeIITpOHHBIM KapoTtakeM (Nphi), kapoTaskeM ye/lIbHOTO COIPOTUBIIEHN S, aKyCTUIECKIM KapOTa>keM U KapOTa)keM
mwrotHoct (RHOB).
Pesynvmamot u 6b1600b1. Pe3yIbTaTbl OTPa)KAIOT OCAIOYHYIO Cpefy U (alnio, IOPUCTO-IPOHNIIAeMble ITIVHUCThIE
OTJIOKEHMSA, ITIMHUCTOCTD, IOPUCTOCTD, HACBHIILIEHHOCTb ¥ MIPUPOAY QIIONA0B B Ko/utekrope. Ilerpodusuyeckue
OLICHKM YKa3bIBAIOT Ha IIOTEHLIMa/IbHbIE 3a/IeXKM HeTH, IPEVMYIIeCTBEHHO IIeCYaHO-IIMHICTbIe ¢ 00beMoM 3,81-
29,47 %, nopucroctbio 17,37-27,85 % 1 BOIOHACHILEHHOCTDIO 47,74-56,02 %. B nimacte mpucyTCTBYIOT Heq)Tb, ras
U Bofja. JTO MCCIefoBaHme 6yneT croco6cTBOBaTh pasBesike yrineBomoponos (YB) B 6acceitne okpyra Komym6us
3a CYeT IPUHATUA CTpaTernii, B KOTOPBIX CelicMUyecKas cTpaTurpadusa B COYETaHUM C JAHHBIMY CKBXXMH OyzeT
Hanbojiee BepOATHBIM CPEICTBOM OIIpeie/ieHNs Liereil OypeHns i 6ojee He3aBUCUMBIX OllepaTOpoB. PesybraTel
3TOrO MCCIE[IOBAHVA HOCTY>KaT OYAYLIMM CTapaTe/lsaM Ha COCENHUX MECTOPOXJEHUAX HepTu U rasa B pailoHe
HAIlIeTO MCC/IeOBAHNA. BhUIN TOCTUTHY ThI 3HAUUTE/IbHbIE YCIIeXN /I obecedeHns OyAyIuX YCIeX0B B pa3BefiKe.

Knioueevte cnosa: 3D-ceiicMopasBefika, IJIACT, KApOTaX, eTpodusndeckue mapamerpsr, JK.
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