ИНСТИТУЦИОНАЛЬНЫЕ ОСНОВЫ АРКТИЧЕСКОГО НЕДРОПОЛЬЗОВАНИЯ И СОЦИАЛЬНО-ЭКОНОМИЧЕСКОЕ РАЗВИТИЕ ТЕРРИТОРИЙ

Полянская И. Г., Игнатьева М. Н., Юрак В. В.

Освоение ресурсной базы углеводородов Арктики представляет собой реальную возможность обеспечения энергобезопасности России в долгосрочной перспективе. Освоение углеводородного потенциала предполагает переход к инновационному недропользованию и развитию институциональных основ реализации этого процесса. В статье обоснован перечень основополагающих принципов формирования инновационного недропользования и факторов, определяющих уровень развития институциональных основ последнего. Рекомендуемые оцениваемые факторы сгруппированы по четырем направлениям: нормативно-правовое, программно-проектное, организационное и финансовое. Выполнен расчет уровня развития институциональных основ для пяти стран, связанных с арктическим недропользованием, согласно которому Россия занимает последнее место. Обращение к информации о добыче предоставило возможность оценки потерь доходной части бюджета.

Ключевые слова: Арктика; углеводородные ресурсы; институциональные основы; качество жизни; доходная часть бюджета.

В настоящее время территория Арктического шельфа, недра которого располагают значительными ресурсами и запасами полезных ископаемых, находится в зоне повышенного интереса политиков, бизнесменов, ученых. Эта тенденция имеет место не только в России, но и в ряде других стран, как располагающих, так и не располагающих выходом к северным морям. Проблемами Арктики в Канаде занимается Североамериканский Арктический институт. К научным организациям Норвегии относятся: Институт Нансена; Исследовательский совет Норвегии; Университет Тромсо; Норвежский институт по изучению проблем обороны; Норвежский институт международных отношений; Норвежский полярный институт. В США научные исследования по вопросам изучения Арктики координирует «Комиссия исследований по Арктике». Арктическими исследованиями также занимается Датский институт международных исследований. В Швеции арктическую проблематику рассматривает агентство по исследованию проблем обороны. В Великобритании к научным организациям, занимающимся проблемами Арктики, относятся институт исследования проблем прибрежных территорий и институт полярных исследований им. Скотта. Во Франции – Французский полярный институт. В Германии вопросами изучения Арктики занимаются в институте полярных и морских исследований Альфреда Вегенера. В Нидерландах арктические исследования проводит Арктический центр - Университет Гронингена (Arctic Centre -University of Groningen). Над разработкой Арктической программы работают в Университете Вагенингена (Arctic Programme -Wageningen University & Research). Создан проект Дельта Груп (Project Delta Group), в состав которой входят: Shell; Van Oord/ Boskalis; Gasunie/Gasterra; Royal Haskoning DHV: Arctic Centre/TNO. Полярными исследованиями занимаются в том числе в Институте геофизики польской Академии наук. Работают десятки научно-исследовательских институтов (в т. ч. Институт полярных исследований) и центров в Китае. В Японии организация, занимающаяся проблемами Арктики – это национальный институт полярных исследований. И даже Индия в начале XXI в. в лице своего департамента развития океанских ресурсов провела переговоры с Норвежским институтом полярных исследований, которые закончились подписанием специальной программы совместных арктических исследований.

Россия также ведет активную исследовательскую деятельность в данной области и имеет давние традиции в сфере научных арктических исследований, выполняемых как академическими, так и отраслевыми ин-

ститутами, федеральными и региональными институтами, аналитическими службами в их числе Университет Арктики; Институт Арктики и Антарктики; Институт всеобщей истории РАН; Московский институт (университет) международных отношений; Институт экономических проблем Кольского научного центра, Институты Российской академии наук, в частности Институт экономики УрО РАН, где указанная проблематика рассматривалась в рамках российско-германского семинара, прошедшего в апреле 2014 г.

Для РФ арктическая зона (АЗРФ) представляет особый интерес, так как здесь помимо углеводородного сырья сосредоточена большая часть российских запасов золота (40 %), хрома и марганца (90 %), платиновых металлов (47 %), коренных алмазов (100 %), вермикулита (100 %), угля, никеля, сурьмы, кобальта, олова, вольфрама, ртути, апатита (50 %), флогопита (60–90 %) и т. д. Освоение минерально-сырьевого потенциала арктических территорий в современных условиях предполагает переход к инновационному недропользованию [1], основные принципы формирования которого описаны ниже.

Принцип национальной безопасности и международного права подразумевает отстаивание национальных интересов и обороны России в Арктике в условиях неурегулированности на международном и межгосударственном уровне, вопросов территориальной принадлежности и хозяйственной деятельности, а также исполнение норм международного права, закрепленных в основных документах.

Принцип глобализации и интеграции основан на пространственном развитии (глобализации) процесса недропользования в рамках интеграционных связей, в том числе арктического. Арктические страны допускают различные формы взаимодействия с учетом своих преимуществ и имеющегося опыта. Использование зарубежного опыта особенно актуально для России.

Принцип «тройной спирали» обусловлен необходимостью оптимального взаимодействия трех основных институтов (власти, науки

и бизнеса) посредством определения и применения совокупности механизмов и инструментов, позволяющих формировать инновационное недропользование.

Принцип государственно-частного партнерства предполагает совместное участие в освоении недр государства и частных компаний, в том числе зарубежных.

Принцип обеспеченности инновационного недропользования предполагает использование системы нормативно-законодательных актов, программных документов и методических материалов.

Принцип системности и этапности воспроизводства МСБ и освоения недр Арктики требует реализации проектов в области поиска и оценки минерально-ресурсного потенциала, а также добычи и переработки на базе междисциплинарного подхода.

Принцип комплексности и эффективности означает необходимость системного решения экономических, экологических, социальных и институциональных проблем формирования и развития инновационного недропользования и расчета соответствующих видов эффективности.

Принцип экологичности и рационального недропользования подразумевает, в силу особой уязвимости природы Арктики, использование экологических ограничений и нормативов охраны окружающей среды для предотвращения загрязнения.

Принцип научности базируется на научном обосновании факторов, влияющих на формирование и развитие инновационного недропользования. Характеризуется необходимостью появления новых методов работы, технологий, конструкций и материалов. Важным направлением становится техническое обеспечение освоения ресурсов шельфа, строительство высокотехнологичных судов, ледоколов, танкеров и морских платформ.

Среди принципов формирования инновационного недропользования важное место отводится развитию институциональных основ реализации этого процесса, которое фактически характеризует совокупность институтов, институциональной среды и орга-

нов, осуществляющих функционирование и контроль за их деятельностью в процессе недропользования, т. е. отражает институциональную обеспеченность недропользования. Обеспеченность в общих чертах может быть определена как «способность выполнять функции, решать проблемы, а также ставить и достигать цели» [2]. «Идея институциональной обеспеченности является динамично развивающейся темой научных изысканий, она развивалась на протяжении многих лет, первоначально акцентируя внимание на создании и укреплении отдельных организаций и оказании услуг по технической и управленческой подготовке кадров для поддержания системы комплексного планирования и процессов принятия решений между учреждениями... Сегодня институциональная обеспеченность часто подразумевает под собой расширение прав и возможностей, социального капитала, создание благоприятных условий, а также культуры, ценностей и властных отношений, которые оказывают влияние на процессы общественного производства» [3]. Был предпринят ряд попыток оценить институциональную обеспеченность арктических стран со стороны Регионального офиса ЕС, Арктического совета, Глобального центра нефти и газа, а так же русской аналитической группы Deutsche Bank, однако эта проблема была изучена лишь в общих чертах, что предполагает дальнейшее продолжение исследования. Предлагаемый методический подход к оценке уровня развития институциональных основ инновационного недропользования арктических стран основывается на теории нечетких множеств и получил детальное отражение в работах [4, 5]. В числе оцениваемых направлений были выделены:

- нормативно-правовое обеспечение;
- программно-проектное обеспечение;
- организационное обеспечение;
- финансовое обеспечение.

По каждому из направлений оценивалась полнота институционального обеспечения согласно табл. 1, отражающей наполнение каждого из направлений, и табл. 2, классифицирующей их по пяти уровням обеспеченности.

Нормативно-правовое обеспечение (I)	Программно-проектное обеспечение (II)	Организационное обеспечение (III)	Финансовое обеспечение (IV)
Ф3, ПП и другие акты развития АНП (X1)	Федеральные и региональные стратегии и программы АНП (X5)	Правительственные комиссии по развитию АНП (X10)	Формы прямого финансирования (X13)
Соглашения об АНП в стране (X2)	Национальные проекты развития регионов и отраслей, федеральные и региональные программы развития отраслей, связанных с АНП (X6)	Формы ГЧП (Х11)	Формы косвенного финансирования (X14)
Межгосударственные соглашения об АНП (X3)	Бизнес-концепции компаний АНП и программы развития корпораций (X7)	Формы научного сотрудничества (X12)	
Международные соглашения об организации форм ГЧП (X4)	Межгосударственные целевые проекты и программы сотрудничества в АНП (X8)		
	Программы по приоритетным направлениям развития НТК в стране (X9)		

 $AH\Pi$ – арктическое недропользование; Φ 3 – федеральные законы; $\Pi\Pi$ – постановления Правительства; Γ 4 Π – государственночастное партнерство; HTK – научно–технологический комплекс.

Результаты оценки инструментария, формирующего каждое из оцениваемых направлений в отношении арктических стран и ЯНАО, отражены в табл. 3.

На основе результатов оценки определена величина уровня развития институциональных основ недропользования (I_0) методом двойной свертки институциональных карт

каждого государства, построенных двоичной системе счисления согласно формулам (1-3) [6]:

$$I_0 = \sum_{j=1}^{5} g_j \sum_{i=1}^{N} r_{ij} \lambda_{ij}, \qquad (1)$$

где λ_{ii} – количество i-х инструментов, при-

надлежащих ј-му критерию разбиения по уровням развития институциональных основ; i – оцениваемый инструмент (i = 1...N); j – уровень критерия разбиения (j = 1...5); r_{ii} – коэффициент значимости і-го инструмента *j*-го критерия разбиения по уровням развития институциональных основ.

Таблица 2

Классификатор уровней развития инструментов

Поморожани	Характеристика уровней					
Показатели	высокий	выше среднего	средний	ниже среднего	низкий	
Суммарная оценка в баллах	10–9	8–7	6–5	4–3	2–1	

Результаты оценки развития институтов по направлениям, баллы

Таблица 3

Страны	Нормативно-правовое обеспечение (I)	Программно- проектное обеспечение (II)	Организационное обеспечение (III)	Финансовое обеспечение (IV)
Россия	23	38	14	10
OAHR	22	39	17	14
Канада	36	48	27	18
США	36	47	30	9
Норвегия	36	50	28	20
Финляндия	30	47	20	15

В рассматриваемой ситуации все инструменты приняты равнозначными, величина r_i в этом случае определяется так:

> $r_i = \frac{1}{N}$ (2)

Весомость каждого уровня д рассчитывается следующим образом:

$$g_i = 0.9 - 0.2 (j - 1).$$
 (3)

Рассчитанные значения весомости отражены в табл. 4.

Таблица 4

Таблииа 5

Весомость уровней развития инструментов

Характеристика уровня	Уровни				
	высокий	выше среднего	средний	ниже среднего	низкий
Весомость, дол. ед.	0,9	0,7	0,5	0,3	0,1

Пример составления карты развития ин- условиях России приведен в табл. 5. ституциональных основ недропользования в

Уровень развития институциональных ос-

Карта развития институциональных основ недропользования России

Инструменты Характеристика уровней Направление институционального высокий выше среднего средний ниже среднего низкий обеспечения Ι 1 II 1 X8 X9 1

	Инструменты		Характе	ристика уров	ней	
Направление	институционального	высокий	выше среднего	средний	ниже среднего	низкий
	обеспечения	высокии	выше среднего	среднии	ниже среднего	пизкии
	X10			1		
III	X11				1	
	X12			1		
IV	X13			1		
1 V	X14				1	
	Итого	3	0	8	3	0

нов недропользования для России составит:

$$I_0 = \left(0, 1\frac{0}{14} + 0, 3\frac{3}{14} + 0, 5\frac{8}{14} + 0, 7\frac{0}{14} + 0, 9\frac{3}{14}\right) = 0,5429$$

или 54,29 %. Подобные расчеты величины I_0 были выполнены для каждой из анализируемых стран. Чем больше I_0 , тем полнее институциональные основы для реализации арктического недропользования. Конечные результаты вычислений сведены в табл. 6. Их интерпретация позволяет ранжировать страны по степени развития институциональных основ в сфере арктического недропользования.

Таблица 6 Ранжирование стран по уровню развития институциональных основ недропользования

Страны	I ₀ , %
Норвегия	85,71
США	84,29
Канада	82,86
Финляндия	81,43
Россия	54,29
в т. ч. ЯНАО	61,43

Как следует из табл. 6, Россия относительно рассматриваемых стран находится на последнем месте. Особенно низок уровень организационного и финансового обеспечения, что служит несомненным препятствием для освоения недр российской Арктики. Согласно экспертному опросу, влияние внешнего фактора, отражающего развитие институциональных основ недропользования, на освоение углеводородного потенциала Арктики, оценивается в 12-14 %. Неполнота развития институциональных основ приводит к потерям, обусловленным недоиспользованием потенциала запасов и ресурсов углеводородного сырья. В свою очередь I_0 оказывает непосредственное влияние на социально-экономическое развитие территории и, соответ-

ственно, уровень жизни проживающего на ней населения. Оценка влияния уровня развития институциональных основ арктического недропользования на социально-экономическое развитие территорий с точки зрения возможного освоения минерально-сырьевого потенциала Арктики, выполненная для условий России, предусматривает следующую последовательность расчетных процедур:

1. Определение ценности углеводородного потенциала Арктики VS:

$$VS = \sum_{i=1}^{n} V_i Z_i,$$

где V_i – потенциальные ресурсы i-го вида топливно-энергетических ресурсов; Z_i – цена і-го вида топливно-энергетических ресурсов на мировом рынке; i – вид ресурса (i = 1...n).

- 2. Определение уровня развития институциональных основ арктического недропользования I_0 .
- 3. Оценка значимости развития институциональных основ арктического недропользования К ...:

$$K_{au} = I_0 K_u$$

 ${\rm K_{_{au}}} = I_{_0} {\rm K_{_{u}}},$ где ${\rm K_{_{u}}}-$ уровень влияния институциональных основ на развитие арктического недропользования (по данным экспертного опроса составляет 0,12-0,14 дол. ед.).

4. Оценка величины потерь ценности углеводородного потенциала Пц:

$$\Pi$$
ц = VSK_и (1 – I_0) или Π ц = VS (K_и – K_{аи}).

Согласно принятому алгоритму в табл. 7 была определена величина ценности углеводородного потенциала Арктики, а в табл. 8 – Пц.

Недоиспользование углеводородного потенциала в связи с неполнотой развития институциональных основ приводит в конечном счете к упущенной выгоде, связанной со снижением объема добычи и, соответственно, величины НДПИ. Естественно, что снижение денежного потока НДПИ приводит к уменьшению доходной части бюджета и отрица-

тельно сказывается на уровне жизни населе-

Таблица 7

Ценность углеводородного потенциала

Вид топливно-энергетического ресурса	Запасы и ресурсы на 01.01.2013 [7]	Цены на мировом рынке [8, 9]	Ценность углеводородного потенциала, млрд руб.
Нефть	48500 млн т	35425 млн. руб./ млн т	1718112,5
Газ	221100 млрд м ³	5892 млн руб./млрд м ³	1302721,2

Таблииа 8

Определение величины потерь ценности углеводородного потенциала

Ценность углеводородного потенциала, млрд руб.	Уровень значимости развития институциональных основ недропользования, дол. ед.	Величина потерь ценности углеводородного потенциала, млрд руб.
3020833,7	0.07	181249,98

Для оценки потерь доходной части бюджета запасы нефти и газа арктической части суши и запасы категории C_2 были переведены в категорию C_1 , а также были учтены коэффициенты извлечения по нефти и природному газу. Согласно произведенным расчетам общая добыча нефти в этом случае составит 2370 млн т, природного газа — 44076,7 млрд м³. Налог на добычу для условий 2014 года определяется в соответствии с Налоговым Кодексом РФ (гл. 26). В итоге НДПИ на углеводородное сырье составит 1168410 млн руб. (нефть) + 1542684,5 млн руб. (газ)

= 2711094,5 млн руб. Тогда, согласно расчету потерь ценности углеводородного потенциала, совокупные потери доходной части бюджета составят 162665,67 млн руб. При этом не следует забывать о потере рабочих мест, потере заработной платы и подоходном налоге, необходимости разведки и разработки новых месторождений для покрытия потребности в топливно-энергетических ресурсах, т. е. общие потери общества из-за недостаточной полноты развития институциональных основ арктического недропользования окажутся намного больше.

Работа проводилась при финансовой поддержке проекта «Новые инструменты и методы прогнозирования инновационно-технологического развития регионов» № 12-П-7-1001.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Игнатьева М. Н., Полянская И. Г. Методологические основы инновационного обеспечения регионального недропользования // Изв. вузов. Горный журнал. 2013. № 6. С. 18–25.
- 2. Fukuda-Parr, S., Lopes, C. & Malik K. Overview: Institutional Innovations for Capacity Development, in *Capacity for Development, New Solutions to Old Problems*, UNDP-Earthscan. 2002.
- 3. Segnestam, Persson, Nilsson and Arvidsson. Country Environment Analysis. A Review of International Experience. Stockholm Environment Institute, Draft, 2002.
- 4. Полянская И. Г., Юрак В. В. Недропользование в российской Арктике в условиях ВТО // Бизнес, менеджмент, право. 2013. № 1 (27). С. 43–48.
- 5. Полянская И. Г., Юрак В. В. Институты, механизмы и инструменты инновационного недропользования // Экономика региона. 2013. № 1 (33). С. 205–215.
- 6. Недосекин А. О., Максимов О. Б. Простейшая комплексная оценка финансового состояния предприятия на основе нечетко-множественного подхода // Хеджинг без риска. Публикации. URL: http://www.hedging.ru/publications
- 7. Углеводородный потенциал Арктической зоны России: состояние и тенденции развития / О. М. Прищепа [и др.] // Минеральные ресурсы России. Экономика и управление. 2014. № 1. С. 2–14.
 - 8. Биржевой навигатор. URL: http://stock-list.ru/natural-gas.html
 - 9. Московская биржа. URL: http://moex.com/ru/index/oil

Поступила в редакцию 25 августа 2014 г.

Полянская Ирина Геннадьевна – кандидат экономических наук, доцент. 620014, г. Екатеринбург, ул. Московская, д. 29, Институт экономики УрО РАН.

Игнатьева Маргарита Николаевна – доктор экономических наук, профессор. 620144, г. Екатеринбург, ул. Куйбышева, 30, Уральский государственный горный университет.

Юрак Вера Васильевна — аспирантка. 620014, г. Екатеринбург, ул. Московская, д. 29, Институт экономики УрО РАН. E-mail: vera_yurak@mail.ru